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Abstract: - This paper presents a robust object recognition and recovery method for image understanding using 
a recent shape feature descriptor: shape context. The novel feature is to unify both object recognition and 
recovery components into an image understanding system architecture, in which a complementary feedback 
structure can be incorporated to alleviate processing difficulties of each component alone. The idea is firstly to 
recognize the preliminary extracted object from a set of models by matching their shape contexts, then to 
apply the a priori shape information of the identified model for accurate object recovery. The output of the 
system is the recognized and segmented object. The shape matching method is illustrated by recognizing a set 
of CAPTCHA and animal silhouette examples with the presence of object translation and scaling, shape 
deformations and noise. Experiments of object recovery using real biomedical image samples, such as MR 
knee, have shown satisfactory results.  
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1   Introduction 
Image understanding plays an important role in 
image analysis and computer vision. Generally it 
includes two key interrelated components: image 
segmentation and object recognition, as shown in 
Fig.1. Image segmentation approach such as 
deformable contour method (DCM) yields contours, 
either exact or approximate, of objects of interest in 
images for recognition. Object recognition performs 
shape matching to identify an object from a set of 
models. The recognition results can be fed back into 
the image segmentation to enhance the accuracy and 
robustness of the segmentation results, which is 
referred to as object recovery. The objective of this 
paper is to apply a new shape feature descriptor, 
shape context [1], for shape matching and object 
recognition, yielding a robust and efficient object 
recovery.  
     The object recognition is implemented by 
matching the shape contexts of an input DCM [2] 
contour with those of a set of model contours. The 
“best” matching contour pair not only determines 
the correct model class to which the input object 
belongs, but also constructs the feature point 
(landmark) correspondences between the input 
DCM contour and the selected model contour. The 
correspondences of the contours’ segments follow 
automatically. For the DCM contour segments with 
a large error compared with the matched model 
segments, a fine-tuning process, which is formulated 

as a maximization of a posteriori probability [3], is 
performed for final object recovery.  
 
 
 
 
 
 
 
 
     The rest of the paper is organized as follows. 
Section 2 briefly reviews DCMs for image 
segmentation and object recognition methods. The 
proposed algorithm is presented in Section 3. 
Experiments on matching animal profiles, 
recognizing CAPTCHA [17] examples, and 
recovering shapes in biomedical images are 
provided in Section 4. Section 5 draws the 
conclusions. 
 
 
2   Background 
As one of the most advanced and popular image 
segmentation methods, deformable contour method 
[2][4-6] iteratively deforms a contour in the image 
to search the boundary of object of interest. Among 
variant DCMs, snake method [4] and level set 
method [2][5][6] are the two most commonly used 
categories. When the a priori object shape 
information is available, model-based snakes or 
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level sets can be applied by either embedding the 
information into the snake energy [7] or level set 
velocity functions [8] to constrain the admissible 
contour deformation range. Parameterized 
deformable models [3][9][10] are commonly used 
when the a priori object shape information of the 
object of interest can be represented by a small 
number of parameters with certain probability 
distributions. Recent progress in DCMs has 
advanced the state of the art significantly. However, 
contour extraction for detailed object recovery still 
remains a challenge when the contour is not readily 
present due to noise, blurry contour segments, or 
complex shapes. Nevertheless, DCMs can in most 
cases extract the desired object boundary, or a good 
approximation, for object recognition. Thus our 
recent work [2] is applied in this application for 
preliminary image segmentation.  
     Object recognition is usually implemented by 
object shape matching methods, such as template 
matching, statistical classification and structural 
classification [11]. Template matching is the 
simplest shape identification method by comparing 
the input shape to a list of stored shape 
representations (templates), which is usually 
formulated as a parameterization problem, with a 
quadratic fitting criterion to be minimized [12]. It 
generally can handle only simple cases where there 
is only a small geometric variation (rotation, size 
and position variation) between the input shape and 
templates, thus not suitable to non-rigid shape 
matching. Statistical approaches [1][13][14] use a 
set of selected shape measures or features that are 
more resilient to shape variations to match shapes, 
such as shape contexts [1] and curvature [13][14], 
which largely enhances the robustness to object 
geometric variations and shape deformations. 
Sclaroff et al. [13] proposed a modal matching 
method to establish the correspondences of contour 
feature points and to recognize objects based on the 
eigenmode description. However, as pointed out in 
[14], without the connectivity information of the 
contour, the algorithm is not guaranteed to generate 
a legal set of correspondences. Hill et al. [14] 
proposed a three-step algorithm to automatically 
identify the landmarks on two contours and 
constructing their correspondences. The main idea is 
that the ratio of the distance of two contour points 
with respect to the whole contour arc length should 
be similar to that of corresponding contour points’ 
distance to the whole arc length of the other contour. 
The algorithm has good performances on complex 
object shapes. However, it is computationally 
demanding due to the iterative processes in all the 
three steps. Structural classification methods 

[15][16] match shapes by comparing their structure, 
i.e., their respective ordered composition of simple 
sub-patterns or shape primitives. Shapes are 
represented by such a composition of shape 
primitives. The selection and segmentation of shape 
primitives are not easy, and generally depend on the 
user preferences and experiences. Zhu and Yuille 
[15] constructed object skeleton model in terms of 
the principal deformation modes for object 
recognition. A branch-and-bound approach is 
applied for skeleton matching based on geometrical 
features of primitives. Object occlusion and 
viewpoint variations can be handled by skeleton 
topology changing operators. The algorithm is 
sensitive to noise on primitive segmentation and 
computationally demanding with multiple 
parameters to be tuned. Shock graph [16] regards 
object skeleton as a set of singularities (shocks), 
which can be further represented as a shock 
tree/graph for shape representation and matching. 
The matching algorithm is to find the shock graph 
node correspondences based on both the graphs 
topological and geometrical similarities, which are 
constructed by the shock category and attributes, 
such as location, orientation and time of formation. 
The shock segmentation and matching algorithms 
are complex and sensitive to shape noise. 
     In this paper, we apply a new shape feature 
descriptor, shape context, to build a robust and 
efficient image understanding system, which 
integrates object recognition component using the 
statistical classification approach and object shape 
recovery component using the parameterized 
deformable model.  
 
 
3   Algorithm Description 
As shown in Fig.1, the proposed algorithm includes 
two steps for object recognition and shape recovery, 
respectively. Step 1 includes shape context 
computation and matching for both the input DCM 
contour and model contours. The output is the 
identified model class to which the input object 
belongs to, together with the point correspondences 
on the matched contours. Based on the matched 
points, the input and model contours are broken into 
contour segments. The input contour segments are 
then matched against the corresponding model 
segments for error analysis in Step 2. Then for any 
large error in the segment mismatch, a fine-tuning 
process utilizing the a priori shape information of 
the identified model is performed for accurate object 
shape recovery in the input image. 
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     In Step 1, the input DCM contour and a set of 
given model contours are firstly sampled to a fixed 
number of points, e.g., n points from each contour, 
shape contexts are then computed for the sampled 
contour points. The shape context is a novel object 
shape descriptor proposed by Belongie et al. [1], 
which measures the relative positions between an 
edge point to other edge points on the object shape. 
For an edge point pi, its shape context is computed 
as a coarse histogram hi of the relative coordinates 
of the remaining n-1 edge points: 

   hi = # {q ≠ pi : (q - pi) Є bin(k)}              
The bins are uniform in log-polar space (k = 1, …, 
K) [1]. As indicated in [1], the shape context is a 
robust shape feature descriptor, which is not only 
invariant to object translation and scaling, but also 
robust under small geometrical distortions, 
occlusion and presence of outliers. Thus it was 
selected for our object recognition and recovery 
applications. Considering a point pi on the input 
DCM contour and a point qj on a model contour, 
their shape context cost is formulated as a χ2 distance 
measurement:    
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where hi(k) and hj(k) denote the K-bin normalized 
histogram at pi and qj, respectively. Thus the set of 
costs Cij between all pairs of points pi on the input 
DCM contour and qj on the model contour becomes 
a square matrix of matching costs with all possible 
matches. Our purpose is to select the match that 
minimizes the total cost of matching,    
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subject to the constraint that the matching is one-to-
one, i.e., π is a permutation. In the matching process, 
a linear assignment algorithm [18] was applied to 
minimize the total cost of the matching. The match 
with the minimum cost value determines both the 
correct model and the point correspondences 
between the input contour and the selected model 
contour. Contour landmarks on both contours are 
then selected accordingly. At last, the input and 
model contour segments correspondences can be 
determined automatically from the contour 
landmarks correspondences. 
     Step 2 utilizes the a priori shape information of 
the identified model to implement the parameterized 
deformable model for object shape recovery in the 
input image. The input contour segments are firstly 
compared with their corresponding model contour 
segments for shape errors. To compute the shape 
error E between an input contour segment Di and its 
corresponding model contour segment Mj, Di should 

be linearly transformed to the coordinate system of 
Mj as Di’, such as affine transform (translation, 
rotation and scaling). Then after normalizing Di’ and 
Mj to be the same length N, the shape error E can be 
computed as: 
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, where (xDik’, yDik’) and (xMjk, yMjk) are the 
coordinates of the kth corresponding points on Di’ 
and Mj, respectively. The final contour segment 
correction for the segments with large errors (e.g., E 
is greater than a threshold) is an application of the 
procedures in [3] on open curves, which formulates 
the contour or contour segment searching problem 
as a maximization the a posteriori probability 
problem. The elliptical Fourier descriptor is applied 
to represent the contour segments (open curves), i.e., 
the parameter vector is like p=(a0, c0, a1, c1, …, aM, 
cM) with a and c are the elliptical Fourier 
parameters. More specifically, for the input contour 
segment c(x, y) corresponding to a model segment 
tp(x, y) with p being a parameter vector, we have the 
following object function to be maximized: 
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,  where tmap is the maximum a posteriori solution, 
Pr(tp) is the prior probability of tp, and Pr(c|tp) is the 
conditional probability, or likelihood, of the contour 
segment given the model. The model is obtained by 
assigning a Gaussian distribution on the mean 
contour obtained from an atlas or drawn by a 
domain expert as in [3]. The maximization of the 
above a posteriori probability function can be 
simplified to the maximization of the following 
function with respect to the parameter vector p:                    
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, where mi and σi
2

  are the mean and the variance of 
pi, σn

2
  is the noise variance of the input image 

region including the contour segment; N is the 
number of points on that segment; b(x(p, n), y(p, n)) 
is an edge map of the input image and k is a 
constant. The input DCM contour is usually a good 
approximation of object shape and there is very little 
variation existing between the DCM contour and the 
correct object boundary, i.e., the optimal value is 
close to the initial value. Therefore, the gradient 
search method can be applied to maximize the a 
posteriori probability function and the parameter 
vector p maximizing the function represents the 
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desired object contour segment. The combination of 
all such contour segments becomes the final 
segmentation result. In practice, a feedback can be 
added from Step 2 to Step 1 if the final segmentation 
result is still not satisfactory, which is generally 
resulted from a poor DCM input contour due to 
complex image segmentation problem. 
 
 
4   Experiments 
In this section, the shape context-based shape 
matching algorithm for object recognition is 
illustrated using two sets of shapes: the first set 
includes eight animal silhouettes from [16]; the 
second set contains a set of CAPTCHA [17] 
examples. At last, an experiment on two MRI knee 
images is used to illustrate how to apply the shape 
matching results for object shape recovery. 
     In Fig.2, eight biological shapes from [16] are 
matched with each other to find the most similar 
shapes to the input shapes. The cross matching 
results with the normalized cost values are shown in 
Table 1. It can be seen that the objects belonging to 
the same category as the input shape are the most 
similar to it, as shown by the bolded numbers in the 
table. The matching results show that the shape 
context is robust to shape deformation and noise, 
which makes it suitable for non-rigid object 
recognition. 
 

 
 
 

 
 
 
 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 
(1) 0 .19 .239 .666 .706 .681 .773 .746 
(2) .19 0 .238 .647 .69 .653 .819 .768 
(3) .239 .238 0 .67 .691 .687 .845 .79 
(4) .666 .647 .67 0 .227 .27 .77 .74 
(5) .706 .69 .691 .227 0 .29 .767 .742 
(6) .681 .653 .687 .27 .29 0 .763 .75 
(7) .773 .819 .845 .77 .767 .763 0 .551 
(8) .746 .768 .79 .742 .742 .74 .551 0 

 
 

     In Fig.3, several CAPTCHA (Completely 
Automated Public Turing Test to Tell Computers 
and Humans Apart) examples are used to illustrate 
the application of the shape context-based shape 
matching approach for character recognition. As 
indicated in [17], the CAPTCHA was proposed by 
Manuel Blum’s group at Carnegie Mellon 
University in order to provide practical help to 
companies like Yahoo! to protect their free email 
services. The underlying principle behind the design 
of CAPTCHAs is a reduction to a hard artificial 
intelligence (AI) problem: human can solve it easily, 
but computer programs cannot. If the problem 
cannot be solved by computer programs, it can be 
used as a CAPTCHA to improve system security 
and screen out “bots1”. If it can be solved, then it 
marks the scientific progress on a hard AI problem. 
In this experiment, we apply the shape context-
based shape matching method to break one category 
of CAPTCHA test: EZ-Gimpy, with different types 
of examples shown in Fig.3.  
     Given an EZ-Gimpy example, a threshold 
method is firstly applied to detect the edge points in 
the image. Then the location of the word to be 
recognized in the image can be determined 
according to the fact that the region containing word 
has much more edge points than other regions. A 
small scanning window (around half size of a letter) 
is applied to search the candidate sub-regions over 
the image. The sub-regions containing more edge 
points than others and connected with similar 
neighbors are merged together and the resultant big 
region is considered as the word region. Thirdly, the 
word is divided into individual letters with the 
assumption that the font size is fixed in all the 
images, i.e., each letter occupies the same space in 
images. After character separation, character 
recognition is implemented by matching image 
characters with model templates based on their 
shape contexts. In this step, each character in an 
image may has several possible candidates, which 
are saved in a list according to their matching costs. 
Thus there are multiple possible words in the image. 
At last, the final word is determined according to the 
recognized letters by searching the best match from 
a given dictionary. The recognition results of 
different types of EZ-Gimpy with cost values are 
shown in Fig. 3. This experiment further illustrates 
the shape context robustness to object shape noise 
and deformations in object recognition applications. 

                                                           
1 A software program that imitates 
the behavior of a human, as by 
signing up thousands of email 
accounts every minute. 

(1) (2) (3) (4) 

(5) (6) (7) (8) 

Fig. 2 Biology shapes for shape matching experiments

Table 1. Shape matching experiments 
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     For object recovery, an experiment on two MRI 
knee images is used to illustrate the contour segment 
correction algorithm. The images in Fig.4(a) and 
4(b) are two examples of midline sagittal MRI knee 
images of size 256 by 256. To extract the femoral 
condyle (top portion of the knee), the goal is to 
delineate the top segment of the contour that 
separates the semicircular portion of the femur from 
the stem. The challenge is that there is a blurry edge 
segment along the middle top boundary, while the 
left and right portions of the femoral condyle are 
rather darker than the middle region. This prevents 
the deformable contour to reach the real boundary 
on the two sides before it flows out from the top. 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 

  
 
 
 
 
      

Before Correction After Correction 
Figure 5(b) Figure 6(a) 

Segment 
Error 

Segment 
Points # 

Segment 
Error 

Segment 
Points # 

0.624 42 (AB) 0.333 39 (A’B’) 
4.217 40 (BC) 1.629 32 (B’C’) 
2.458 48 (CA) 1.109 52 (C’A’) 

Figure 5(c) Figure 6(b) 
Segment 

Error 
Segment 
Points # 

Segment 
Error 

Segment 
Points # 

2.435 43 (AB) 1.18 39 (A’B’) 
1.483 31 (BC) 1.073 31 (B’C’) 
2.115 45 (CA) 1.267 47 (C’A’) 

 
 
 
 
     As stated in the Step 1 of Section 3, two input 
knee contours (Fig.5(b), (c)) obtained by the DCM 
[2] are firstly matched with the knee model in 
Fig.5(a) to construct the correspondences of contour 
points. Here three pairs of landmarks are selected on 
the input and model contours, as shown in Fig.5. 
The model landmarks a, b, and c correspond to the 
A, B and C landmarks on the input contours. The 
contour segment correspondences follow 
automatically. For the first input contour in Fig.5(b), 
two large error segments of BC and CA, which 
indicate the segmentation difficulties mentioned 
earlier, have to be further refined as described in the 
Step 2 of Section 3. The constructed final result is 
shown in Fig.6(a) with both segments BC and CA 
being corrected and shown as segments B’C’ and 

(a) much: 26.47
      such: 30.53 
      moon: 40.08
      sock: 42.56
(b) part: 32.98 
      cart: 37.63 
      past: 42.33 
      sort: 46.3

(c) bell: 21.64 
      ball: 28.3 
      tall: 36.35 
      tail: 40.74
(d) flag: 22.62
      flat: 35.55
      ring: 41.78
      free: 51.59
(e) past: 49.53 
      east: 50.37 
      test: 52.28 
      rest: 53.3 

(f) polish: 75.02
     poison: 80.79

Fig. 3 Shape context for breaking CAPTCHA examples

(a) Knee 1 (b) Knee 2 
Fig.4 Input MRI knee images 

a c

b

(b) Knee 1 input  (a) Model (c) Knee 2 input 
Fig.5 The knee model and input shapes 
obtained by a DCM [2] 

Fig.6 The knee recovery results after 
contour segments correction 

(a) Knee 1 final result  (b) Knee 2 final result

Table 2. The contour segments errors comparison 
before and after final correction 
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C’A’. Similarly, for the second input contour in 
Fig.5(c), two large error segments of AB and CA are 
corrected and shown as segments A’B’ and C’A’ in 
Fig.6(b). The contour segment errors before and 
after correction are listed in Table 2. It can be seen 
the final results have less shape error than those 
before correction. 
 
 
5   Conclusion 
In this paper, a robust and efficient shape context-
based shape matching method is presented to solve 
the object recognition and recovery problems for 
image understanding. The presented image 
understanding system incorporates a complementary 
feedback structure to alleviate processing difficulties 
in each of the object recognition and shape recovery 
components alone. The object recognition is 
implemented by a statistical classification approach, 
in which a shape context-based shape matching 
method is applied to identify the preliminary 
extracted object from a set of models. It also 
constructs the contour landmark correspondences on 
the input and model contours. The correspondences 
of the contours’ segments follow automatically. The 
identified model shape information can be utilized 
for the object recovery as the a priori knowledge, 
which is realized by a parameterized deformable 
model. For the input contour segments with a large 
error when compared with their corresponding 
model segments, a fine-tuning process, which is 
formulated as a maximization of a posteriori 
probability, is performed for the segments 
correction. The output of the system is the 
recognized and segmented object in the input image. 
The experiments with the animal shape matching 
and CAPTCHA recognition and the MRI knee shape 
recovery demonstrate the capability and potential of 
this system. 
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