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Abstract: - In this work the problem of modelling and identification of an activated sludge depollution 
bioprocess is focused. This bioprocess is in fact an aerobic fermentation process that is carried out in a recycle 
bioreactor. A nonlinear dynamical model is obtained using the reaction scheme and the mass balance. The 
dynamical kinetics of the process are strongly nonlinear and not exactly known; therefore an estimation 
strategy is developed for identification. The nonlinear observer design is based on high gain approach. The 
tuning of the observers is reduced to the calibration of a single parameter. Computer simulations are included. 
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1   Introduction 
 

Nowadays the use of advanced control for 
wastewater treatment plants is low. A main reason is 
the lack of quality of the data, and the fact that more 
sophisticated control strategies must be based on a 
model of the dynamics of the process [1], [4], [8]. 
When biotechnology strategies are used in 
wastewater treatment, the nonlinearity of the 
bioprocesses and the absence of cheap and reliable 
instrumentation require an enhanced modelling 
effort and modern identification strategies for the 
kinetics. In order to apply modern control strategies, 
it is necessary to obtain useful models. Many times, 
the dynamic models are high-order and nonlinear. 
Reduced-order techniques must to be applied for 
these models. Serious problems appear in the 
measurement of substrates, biomass, and product 
concentrations. In many cases the state variables, i.e. 
the concentrations, were analysed manually and as a 
result there is not on-line (and real-time) control. 
     These problems can be solved using “software 
sensors”. A software sensor is a combination 
between a hardware sensor and a software estimator. 
These software sensors are used not only for the 
estimation of the concentrations - the state variables 
- but also for the estimation of the kinetic 
parameters. Very important is the estimation of 
kinetic rates inside a bioreactor - the estimates of 
these rates are used for advanced control strategies. 
The interest for development of software sensors for 
bioreactors is proved by the big number of 
publications and applications in this area [1], [5], 
[8], [10], [12]. The first approach from historically 

point of view is based on Kalman filter which leads 
to complex nonlinear algorithms. Another well-
known technique is the Bastin and Dochain 
approach based on the adaptive systems theory [1]. 
This strategy consists in the estimation of 
unmeasured state with asymptotic observers, and 
after that, the measurements and the estimates of the 
state variables are used for on-line estimation of 
kinetic rates. Remarkable is the fact that the state 
asymptotic observers are designed without any 
knowledge of kinetics. This method is useful, but in 
some cases, when many reactions are involved, the 
implementation requires the calibration of too many 
parameters. For example, if we have n components' 
concentrations used for the estimation of m kinetic 
rates, is necessary to calibrate 2n tuning parameters. 
For overcome this problem, a possibility is to design 
an estimator using a high gain approach (see [2], [5], 
[6], [10]). The gain expression of these observers 
involves a single tuning parameter whatever the 
number of components and reactions. 
     This paper is organized as follows. An important 
wastewater treatment process - the activated sludge 
process - is presented in Section 2. The bioprocess is 
carried out in a Continuous Stirred Tank Bioreactor 
(CSTB) with recycle stream. The reduced model of 
the process is obtained using the singular 
perturbations approach. Section 3 deals with the 
design of an on-line estimation strategy for the 
identification of the unknown kinetics. The on-line 
estimation algorithm is based on high gain 
technique. Computer simulations illustrate the 
performances of nonlinear observers. Finally, 
concluding remarks are collected in Section 4. 
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2 Dynamical model of the activated 
     sludge bioprocess 
A bioreactor is a tank in which several biological 
reactions occur simultaneously in a liquid medium 
[1]. A biotechnological process carried out in a 
bioreactor can be defined as a set of m biochemical 
reaction involving n components. In industry, the 
bioreactors operate in three modes: the continuous 
mode, the fed-batch mode and the batch mode [1], 
[10]. Bioreactors that operate in the continuous 
mode are usually known as Continuous Stirred Tank 
Bioreactors. In a CSTB, the substrates (the nutrients) 
are fed to the bioreactor continuously and an 
effluent stream is continuously withdrawn from the 
CSTB such that the culture volume is constant. 
Often, a part of the biomass is recycled. To recycle, 
the biomass must be separated from the substrate 
and yield, then travel through pipes after separation. 
This time of recycle introduce delays in the states 
and complicates the dynamics. The benefits are that 
the recycle increases the overall conversion and 
reduces the costs.  
     The activated sludge process is an aerobic 
process of biological wastewater treatment [1], [4]. 
It is usually operated in at least two interconnected 
tanks, Fig. 1: an aerator in which the biological 
degradation of the pollutants takes place and a 
sedimentation tank (settler) in which the liquid is 
clarified, that is the biomass is separated from the 
treated wastewater. Part of the settled biomass is fed 
back to the bioreactor, while the surplus biomass is 
removed from the process. The reaction in the 
aerator may be described by a simple autocatalytic 
aerobic microbial growth that can be represented by 
the following scheme: 
 

←

→+
ϕ

XCkSk 21                       (1) 
 
where S, X and C are respectively the pollutants, the 
biomass and the dissolved oxygen, ϕ  is the reaction 
rate and 1k  and 2k  are the yield coefficients. The 
above reaction scheme is a simply qualitative 
relation and does not include stoichiometric 
considerations. 
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Fig.1. Schematic view of an activated sludge process 

     It is often assumed that the settler work perfectly, 
i.e. there is no biomass in the overflow of the settler. 
Then, the dynamics of the plant (aerator + settler) is 
described by the following mass balance equations 
[1], [3], [9]: 
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where inS  is the concentration of influent substrate 
(g/l), inQ  is the oxygen feed rate (g/lh), RX  is the 
concentration of the recycled biomass (g/l), Rin FF ,  
and WF  are the influent, recycle and waste flow 
rates (l/h), respectively, V  and SV  the aerator and 
settler volumes (l), respectively, and )(⋅µ  is the 
specific growth rate (h-1) of reaction ϕ . If we define 
by T

RXXCS ][=ξ  the state vector of (2), 
X)(⋅= µϕ  the reaction rate, T

ininin QSDF ]00[=  
the feed rate vector, TQ ]0000[=  the gaseous 
outflow rate vector and TkkK ]01[ 21 −−=  the 
yield coefficient matrix, then the dynamical model 
(2) can be compactly written as: 
 

QFDK −+−= ξξϕξ )(&     (3) 
 
     This model describes in fact the dynamics of a 
large class of bioprocesses carried out in stirred tank 
bioreactors and is referred as general dynamical 
state-space model of this class of bioprocesses [1]. 
In (3), D  stand for the dilution rate matrix and is 
given by  
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whose entries are defined as: 
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     The oxygen feed rate inQ  is usually set equal to 
the liquid-gas oxygen transfer rate: 
 

)( CCakQ sLin −⋅=                          (6) 
 
where akL  is the oxygen mass transfer coefficient 
and sC  the saturation constant. In the following, we 
shall consider that akL  is a linear function of the air 
flow rate W [3]: 
 

0, 00 >= aWaakL      (7) 
 
     The most difficult task for the construction of the 
dynamical model (3) is the modelling of the reaction 
kinetic ϕ . The form of kinetics is complex, 
nonlinear and in many cases partial or completely 
unknown. A realistic assumption is that a reaction 
can take place only if all reactants are presented in 
the bioreactor. Therefore, the reaction rates are 
necessarily zero whenever the concentration of one 
of reactants is zero. A common form for the reaction 
rate is X)(⋅= µϕ . A possible structure of the 
nonlinear specific growth rate )(⋅µ  is a Monod-type 
model, i.e. [9]: 
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where maxµ  is the maximum specific growth rate 
and CS KK ,  are Michaelis-Menten coefficients. 
     The model order can be reduced using singular 
perturbations techniques [7]. A systematic approach 
to model order reduction via singular perturbation 
for bioprocesses is fully described in [1]. Let’s 
consider that there are low-solubility products 
and/or substrates that occur only in fast reactions. In 
the general dynamical model (3) each of them is 
denoted iξ  and its corresponding dynamical 
equation is: 
 

iiii
i QFKD
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where iK  is the line of K corresponding to iξ . 
Then, application of singular perturbation result in 
setting iξ  and dtd i /ξ  to zero and replacing the 
dynamical equation (9) by the algebraic equation: 
 

iii FQK −=ϕ  (10) 
 
     Another typical situation of application of 
singular perturbations to biosystems control is the 

multi-reactor case when the volumes of tanks are 
quite different from one another. For instance, in the 
activated sludge process, the dynamics of RX  can 
be written as follows: 
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with VFD WVW /= . If SV  is small with respect to V, 

VVS /  may be considered as being negligible. 
Singular perturbations consist of setting VVS /  to 
zero and replacing (11) by the following algebraic 
equation: 
 
( ) ( ) RVWRRin XDDXDD +=+    (12) 
 
So, the order of the model is reduced from 4 to 3 and 
the reduced-order model can be used in estimation 
or control strategies. This reduced-order model 
consists of the first three equations of the model (2), 
where the concentration of the recycled biomass 

RX  is replaced using the algebraic equation (12). 
Then the state vector of the reduced-order model 
becomes T

r XCS ][=ξ . 
 
 
3 High gain observers and simulation  
     results 
 
3.1 Design of the high gain observers 
When the parameters and the kinetics of the 
bioprocess are partially known or unknown, it is 
necessary to use identification procedures. In 
practice, in the case of the activated sludge 
bioprocess, the reaction rate ϕ  and the specific 
growth rate µ  are unknown (the form (8) of the 
specific growth rate is a simple assumption). For on-
line estimation of these kinetic rates, algorithms 
based on a state observer technique or linear 
regressive observers can de designed [1]. These 
algorithms provide good estimates for the unknown 
kinetics, but the problem is the number of tuning 
parameters ( ×2 n). In order to overcome this 
disadvantage, a simple nonlinear observer based on 
high gain approach is proposed in [2], [5], [6]. 
      In order to design high gain observers for the 
unknown kinetics, the reduced-order model of the 
activated sludge bioprocess will be written as: 
 

rrrrr
r FDtHK

dt
d

+⋅−⋅⋅= ξρξ
ξ

)()(  (13) 
 

with  
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     In (13), ( )tρ  represents the unknown kinetics of 
the process. If we suppose that the reaction rate is 
totally unknown, then ( ) ( )tt ϕρ =  and ( ) 1=rH ξ . If 
the structure of the reaction rate is known: 

X)(⋅= µϕ , but the specific growth rate is unknown, 
then ( ) ( )tt µρ =  and ( ) XH r =ξ . 
     For the model (13), the yield matrix (vector in 
our particular case) rK , with 13)dim( ×=rK , is of 
full rank, i.e. ( ) 1=rKrank . This assumption is true 
for our particular model, and for the general class 
(3) case is a generic property of the yield matrix. We 
shall suppose that all state variables are measured 
(contrarily, a state estimator can be used). Since rK  
is full rank, i.e. is left invertible, a full rank arbitrary 
submatrix aK  (in our particular case a scalar) of rK  
can be considered. Let bK  be the remaining 
submatrix of rK . Then the system (13) can be 
written as follows: 
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where ),( ba ξξ , ( )ba FF ,  and ( )ba DD ,  are partitions 
induced by the factorization of rK . 
     We suppose )(tbξ  a known (measured) signal, 
denoted )()( tt bξσ = . Then consider the system [5]: 
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where g(t) is a bounded unknown function, which 
may depend on σξ ,a , inputs, noise. The hypothesis 
of boundedness of the kinetics is in accordance with 
industrial practice. The design of nonlinear high 
gain observers is done in [2], [5], [6]. The high gain 
observer equations for the general class of 
bioprocesses (3) and applicable also for the activated 
sludge process described by (13) are [5], [11]: 
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     The observer (16) provides on line estimates ρ̂  
for the unknown kinetics; this observer is in fact a 
copy of the bioprocess model, but with the state aξ  
replaced by its estimate aξ̂ , and with a corrective 
term. The tuning of this observer is very simple 
because a single parameter is involved: θ . 
     For the activated sludge bioprocess, the 
factorization of yield matrix rK  is: 
 

1kKa −=  (17) 
 
and consequently we obtain: 
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     From equations (13), (16), and with the 
factorization (17), (18), we can obtain the equations 
of two high gain observers: 
 
(i) an observer for on-line estimation of the reaction 

rate ( ) ( )tt ϕρ =  (with ( ) 1=rH ξ ): 
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(ii) an observer for on-line estimation of the specific 

growth rate ( ) ( )tt µρ =  (with ( ) XH r =ξ ): 
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     Remark. It can be seen that the estimator (19) 
needs only the measurements of S, and the estimator 
(20) needs both measurements of S and X.  
 
 
3.2 Simulation results 
The performances of the nonlinear observers have 
been tested by performing extensive simulation 
experiments. The activated sludge process has been 
simulated by numerical integration of the basic 
dynamical model equations (13), considering the 
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specific growth rate µ  as a Monod-type  model (8) 
with: 1

max 2.0 −= hµ , lmgK S /75= , lmgKC /2= , 
and the following bioprocess parameters [3], [11]: 
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     The equations (13) were integrated under the 
following initial conditions: ,/6,/5 lmgClmgS ==  

lgXlgX R /5.2,/25.1 == . 
      The nonlinear high gain observers (19), (20) 
were implemented for the activated sludge process 
(13). The simulations are performed considering that 
the reaction rate ϕ  for the first observer and the 
specific growth rate µ  for the second observer are 
unknown. We consider that the influent substrate 
concentration inS  is a disturbance applied to the 
bioreactor, with the time profile plotted in Fig. 2. 
     In the case of first estimator (19), the main goal 
is to reconstitute the time evolution of ϕ  from the 
measurements of S, and for the second observer (20) 
the objective is to reconstitute the time evolution of 
µ  using the measurements of S, X (in fact obtained 
from simulation). The “true” values of the specific 
growth rate (8) are used only for the simulation of 
measured data from the bioprocess. Fig. 3 shows the 
evolutions of state variables, respectively, S (mg/l) 
and C (mg/l); in Fig. 4 the time profile of the 
biomass concentration X (g/l) is depicted. In Fig. 5 
the estimated parameter ϕρ ˆˆ =  and the real reaction 
rate ϕ  are presented (the observer (i)). Fig. 6 depicts 
the time evolution of the estimated rate µρ ˆˆ =  and 
the real specific growth rate µ  (the observer (ii)). 
The tuning parameter was set to the value 10=θ . 
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Fig. 2. Time profile of the disturbance Sin 

     Finally, in order to test the robustness of the 
nonlinear observers to noisy measurements, the 
measurement of X is vitiated by an additive 
Gaussian noise (see Fig. 4). This noise is with zero 
mean and amplitude equal to 5% of the free noise 
values. In Fig. 7 the specific growth rate and its 
estimate obtained using noisy data of X are depicted. 
In all figures, the values obtained from simulation 
are depicted with solid curves and the estimates with 
dashed curves. Notice that the estimation error can 
be made as small as wished if we choose greater 
values of θ . The problem for a large value of θ  is 
that the observer becomes noise sensitive.  
     The results obtained for both estimators can be 
substantially improved if the tuning parameter is 
chosen higher in value. This relative big value of θ  
can be used only if the measurements are free-noise. 
Contrarily is possible that the estimates of kinetics 
cannot be utilised. The value of the tuning parameter 
is therefore a compromise between a good 
estimation and the noise rejection. 
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4   Conclusions 
Some aspects regarding the modelling and the 
identification of an activated sludge depollution 
bioprocess have been presented in this work. The 
dynamic nonlinear model of this bioprocess that 
takes place in a recycle bioreactor was widely 
analysed and the singular perturbations theory was 
applied to facilitate the order reduction of the model. 
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Fig. 5. Time profiles of reaction rate and its estimate 
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     The design and the implementation of simple 
nonlinear high gain observers for the activated 
sludge process was examined. The high gain 
observers allow on-line estimation of the unknown 
kinetic rates inside the bioreactor. The calibration of 
these observers is simple because implies the tuning 
of a single parameter whatever the number of 
components and reactions. The observers proposed 
for the depollution bioprocess need measurements of 
a part of the state variables. Anyhow, if it is no 
possible to measure on-line these concentrations, a 
state estimator is needed. Good results are obtained 
via simulation. The estimation results can be utilised 
for the control purposes. 
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