
High-Speed and Low-Power Implementation of Hash Message
Authentication Code through Partially Unrolled Techniques

H.E.MICHAIL, A.P.KAKAROUNTAS,E.FOTOPOULOU, C.E.GOUTIS

Electrical & Computer Engineering Department
University of Patras

GR-26500 Patra
GREECE

Abstract: - In this paper an efficient implementation, in terms of performance, of the keyed-hash message
authentication code (HMAC) using the SHA-256 hash function is presented. This mechanism is used for
message authentication in combination with a shared secret key. The proposed hardware implementation,
invokes a partially unrolled implementation for the underlying hash function leading to a high-throughput and
low-power implementation for the whole HMAC construction. Special care has been taken so that the proposed
implementation doesn’t introduce extra design complexity; while in parallel functionality was kept to the
required levels.

Key-Words: - Security, HMAC, Hash functions, SHA-256, Partial- Unrolling, High-Throughput, Hardware
Implementation

1 Introduction

The scope of an HMAC implementation is to
authenticate both the source of a message and its
integrity without the use of any additional
mechanisms. This is achieved by attaching a digital
signature to the message [1]. The digital signature is
generated by the HMAC itself after supplying it
with the message. HMAC’s have two functionally
distinct parameters, a message input and a secret
key known only to the message originator and
intended receiver(s). HMAC is used not as a cipher,
but rather as a mechanism for signing a packet with
a key at one end of the connection, and then
verifying the signature at the other end using the
same key. Without the key it is infeasible to
generate a packet with the correct signature.

Due to an essential need for security, in mobile
services as specified in the WTLS security level of
WAP , in Public Key Infrastructure (PKI), in SSH
protocol and in many other applications an efficient
and small-sized HMAC implementation is very
important. Especially, nowadays that security is a
major demand, due to the rapid evolution of
plethora of communications standards. In addition
to the demanded high security level, the need for
high performance is a significant factor for the
selection of a security implementation. Thus,
hardware implementation is far more suitable, for
security issues, compared to the corresponding
software implementations. The proposed

implementation is structured in such way so that it
can be used in a variety of applications, maintaining
the flexibility of similar software constructions.

The security level of a HMAC implementation is
based on the underlying cryptographic hash
function. Up to now MD-5 and SHA-1 were used
but lately the security problems have been
discovered in both SHA-1 [2] and MD-5 [3]. It is
clear enough that in the next time new
implementations of HMAC mechanism are going to
be demanded by the market incorporating hash
functions with higher levels of security which in
turns results to a higher level of security for the
whole HMAC construction. For this reason in this
paper the proposed HMAC implementation uses the
SHA-256 hash function which up to now is
considered as safe.

But not only that ,having in mind all new
applications that need a HMAC mechanism the
proposed architecture leads to a high-throughput and
low-power implementation. Authentication to
Virtual Private Networks (VPN’s) that companies
are establishing in order to exploit on-line
collaboration, digital signature algorithms like DSA
that are used for authenticating services like
electronic mail, electronic funds transfer, electronic
data interchange, software distribution, data storage
etc, security in networks and mobile services, as in
SSL, which is a Web protocol for establishing
authenticated and encrypted sessions between Web

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

servers and Web clients are cases where a high-
speed HMAC mechanism is required for the
corresponding server of the application ,which has
to reach the highest degree of throughput in order to
satisfy immediately all requests for service from all
users-clients

The rest of this paper is organized as follows. In
section 2 a general description of hash functions
algorithms is given and the existing
implementations techniques are presented. In
section 3 the proposed implementation is presented
in depth, providing details regarding the
architecture, the logic and the modifications to
decrease the critical path. In section 4 examples of
implemented hash functions in FPGA technology
are compared to other implementations. Finally in
section 5 the paper concludes.

2 Proposed SHA-256 Implementation

Hash functions are iterative algorithms which in
order to compute the final message digest they
perform a number of identical or slightly different
operations. The Secure Hash Standard [4] describes
in detail the SHA-256 hash function. Throughput is
kept low due to the large number of the required
operations. An approach to increase significantly
throughput is the application of pipeline.

This has a small area penalty but leads to a
significant higher throughput which is the main
need of market considering the servers for VPN’s,
DSA etc. For this reason, most of the proposed
optimized implementations exploit the benefits that
pipeline offers, balancing the achieved throughput
with the introduced area penalty.

From a survey to all hash functions it is clear
enough that the best compromise is to apply four
pipeline stages so as to quadruple throughput and
keep the hash core small as well. This approach
enables four operations to be carried out
concurrently. Applying more pipeline stages is
something that will violate the area constraints.

Applying pipeline the architecture of a SHA-256
core is formed as illustrated in Fig. 1 where there
are four pipeline stages and a single operation block.
The SHA-256 core needs many more components in
order to function properly such as a Padding Unit, a
MS-RAM, a Control Unit and a Constants Array
Bank. These components exist in the whole HMAC
architecture which is studied in the next section. In
this section we will focus on the “pure” SHA-256
core and how can this be optimized beyond the
application of pipeline.

Fig. 1: SHA-256 core with 4 pipeline stages

The critical path of the illustrated architecture is
obviously located between the pipeline stages where
the operation block of the hashing core exists. In
Fig.1 the operation blocks are referred as
transformation rounds following the standard’s
terminology. Even in the whole HMAC
implementation the critical path remains between
the pipeline registers of the hashing core since the
other units like MS RAM and Constants’ Array, do
not contribute due to their nature (memory and
hardwired logic respectively), while control unit is a
block containing very small counters which also
don’t contribute to the overall maximum delay.

Although the need for high throughput is
recognized the performance of all hardware
implementations are degraded because there has not
been much effort in optimizing the conventional
implementation of the transformation rounds which
are responsible for performing every single
operation.

In order to produce a hash function
implementation with a higher throughput we
should consider how throughput is calculated and
then select which term of the formula should be
manipulated. The throughput of a hash function
implementation is given by the following equation:

operations
fbits

Throughput operation
conf #

⋅
= (1)

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

where #bits is equal to the number of bits
processed by the hash function, #operations
corresponds to the required clock cycles between
successive messages to generate each Message
Digest and foperation indicates the maximum operating
frequency of the circuit.

From the above equation and considering that a
message block, as provided by the padding unit, is
at most 512 bits, the two terms that can be
manipulated is either #operations or the circuit’s
operating frequency, foperation. In the proposed
technique a manipulation of the #operations is
considered.

To explain the way that this manipulation is done
let’s consider two consecutive operations of SHA-
256 hash function which are illustrated in Fig. 2.
Each one of the at, bt, ct, dt, et, ft, gt and ht is 32-bit
wide resulting in a 256-bit hash value. Kt and Wt
are constant values for iteration t and the tth w-bit
word of the message schedule ,respectively.

 Fig. 2: Two Consecutive SHA-256 operations

The proposed design approach is based on a
special property of the SHA-2 operation block. The
considered inputs at-2, bt-2, ct-2, dt-2, et-2, ft-2, gt-2 and
ht-2 go through a specific procedure in two
operations and after that the considered outputs at,

bt, ct, dt, et, ft, gt and ht arise. In between the signals
at-1, bt-1, ct-1, dt-1, et-1, ft-1, gt-1 and ht-1 exist that are
outputs from the first operation and inputs for the
second operation. Except of the signal at-1 and et-1
the rest of the signals bt-1, ct-1, dt-1, ft-1, gt-1 and ht-1
are derived directly from the inputs at-2, bt-2, ct-2, et-2,
ft-2 and gt-2 respectively. This means consequently
that also ct, dt, gt and ht can be derived directly from
the Xt-2 inputs.

Furthermore, some calculations during the
operation are depended only on the primary
operation block's inputs and on intermediate results
that are sequentially computed. It seems that some
of these calculations can be done in parallel for
consecutive operations. In Fig. 3, the proposed
implementation is presented in which two
consecutive operations have been merged and thus
their result is computed in only one clock cycle
instead of two. The gray marked areas on Fig. 3
indicate the parts of the proposed SHA-256
operation block that operate in parallel and result to
the concurrent computation of the primary operation
block's outputs.

Fig. 3: Two Merged SHA-256 Operations

Inspecting Fig. 2 and Fig. 3 it is obvious that the
critical path in the proposed implementation consists
of six addition levels instead of the four addition
levels consisting the critical path of the non-

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

concurrent implementation. Although, this fact
reduces the maximum operation frequency in the
proposed implementation, the throughput is
increased significantly since the hash value in the
proposed instrumentation is computed in only 32
clock cycles instead of 64 in the non-concurrent
implementations. This computations leads to the
result shows that the throughput of the proposed
implementation increases 50% which in turn will
increase by 50% the throughput of the total HMAC
mechanism. The experimental result verifies this
theoretical assumption.

3 Description of HMAC System
In the proposed HMAC architecture, pipeline
technique is applied to increase both speed and
throughput. The two process stages are performed
with the usage of two pipelined SHA-256 cores, as
they were presented in the previous section. The
whole HMAC implementation is illustrated in the
Fig. 4.
In the MS RAM, all message schedules Wt of the
padded message are stored. The Constants Array is
a hardwired array that provides the constant values
Kt and the constant initialization values H0 - H7.
Additionally, it includes the Wt generators and the
Key Generation unit that is required at the HMAC
mechanism. As it was previously mentioned this
components are essential for the hashing cores to
function properly.

The HMAC must firstly be initialized before
processing any message. The initialization
procedure corresponds to computing the hash values
of two certain 512-bit blocks, which are the
corresponding keys, and this is performed
independently in the two SHA-256 cores. When the
initialization procedure is completed, the hash
values from the outputs of the two SHA-256 cores
are stored in the Constants Array unit and are then
used continuously in the two SHA-256 cores as the
new initial values for H0 – H7. This is the first time
that a message can be supplied for process to the
first SHA-256 core as long as it has been padded,
while the initialization procedure was in progress. In
normal operation, the inputs H0 – H7 are the hash
values that were pre-computed during the
initialization process until a signal comes that makes
the system change the used keys. Then the Key
Generation Unit computes the new keys and the
HMAC system must be again initialized.

In the proposed implementation each hmac value
is computed after 129 clock cycles (64 for each one

of the two SHA-256 cores and one clock cycle for
the intermediate padding-register).

Fig. 4: Typical HMAC core architecture

The messages that are supplied in the HMAC
implementation are usually the 256-bit hash value of
the whole text that is intended to be digitally signed.
This is why the messages, supplied in the HMAC
implementation, are assumed as single-block (up to
512-bit length) which enables us to use the pipeline
technique.

The method of intermediate storing the values
that have arise from the processing of the two keys
at the SHA-256 cores saves the time of processing
two 512-bit blocks for every message and also
allows pipeline technique to be applied, increasing
this way both speed and throughput of the HMAC
implementation. These stored intermediate values
shall be treated and protected in the same way as
the secret keys.

The decreasing of the operating frequency of the
SHA-256 core results to a lower level of dynamic
power dissipation for the whole HMAC core. This
can easily be seen regarding the relevant power
equations. Moreover the adopted methodology for
the implementation of each SHA-256 operation

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

block combines the execution of two logical SHA-
256 operations in only one single clock cycle. This
means that the final hmac value is computed in only
65 clock cycles (whereas 129 with conventional
pipeline) and thus calls for only 65 write operations
in the temporal register that save all the intermediate
results until the final hmac value is computed

 Moreover in the proposed implementation a
50% higher throughput is achieved comparing to
competitive implementations. As a result of this the
operating frequency can be reduced about 50% in
case we don’t need the achieved extra throughput.
The reduction of the operating frequency also leads
to reduction of the supplying voltage Vdd (in ASIC
designs) at about 40 % taking in consideration
conservative aspects. On the other hand a significant
increase in the effective capacitance of the circuit
occurs by a factor of two that has to be taken in
consideration. Considering that the power
dissipation in a circuit is proportional to the
effective capacitance, to the operating frequency and
to the square of the supplying voltage, it can be
assumed that in this way an extra 60% power saving
can be achieved. Thus the proposed implementation
is optimized in terms of performance, power
dissipation and size.

4 Experimental results
The proposed hashing cores that were presented

as examples were captured in VHDL and were fully
simulated and verified using the Model
Technology’s ModelSim Simulator. The designs
were fully verified using a large set of test vectors,
apart from the test example proposed by the
standards.

The achieved operating frequency is equal to
36.1 MHz for the SHA-256 hashing core. Achieving
this high frequency, throughput exceeds 2.3 Gbps.
In Table 1, the proposed implementation and the
implementations of [5], [6],[7] and a conventional
pipelined implementation, that was developed for a
fair comparison, are compared.

SHA-256 Frequency
(MHz)

Throughput
(Mbps)

[5] 83.0 326.0
[6] 74.0 291.0
[7] 77.0 606.0

Conv.Impl 50.1 1632.0

Proposed 36.1 2310.4

Table 1. Throughput Comparison of proposed
and other alternatives SHA-256 implementations

From the experimental results, there is more than
40% increase of the throughput compared to the
conventional implementation and more than 400%
compared to the previously better performing
implementation.

The area penalty compared to the non-pipelined
implementations is significant (about 20%-30%) but
the comparison is unfair both for area and
throughput and that is the reason for developing the
conventional pipelined implementation of SHA-256.

It has to be mentioned that surprisingly not all
the companies that provide cryptographic IP cores
support SHA-256. Moreover not many academical
proposals have been made for SHA-256 and this is
the reason why not many comparisons have been
presented in this paper. The reason for this lack on
SHA-256 implementations is that nowadays the
most widely used has function is SHA-1 in which
the security problems that have recently been
discovered [2] were announced in February 2005
and not many work has been presented since then.
This supports more the motivation to present and
propose novel implementations of HMAC
mechanism invoking the SHA-256 hash function.

The achieved operating frequency is equal to
34.7 MHz for the whole HMAC construction which
corresponds to an increase of more than 50%
compared to the implementations of [8], [9],[10]
([9],[10] commercial IP) and to the conventional
pipelined implementation that was developed for a
fair comparison. However it is important to point
out that in [8], [9],[10] the underlying hash function
is SHA-1 with the already known security problems.

Achieving this high frequency, throughput
exceeds 2.2 Gbps for the HMAC implementation. In
Table 2, the proposed implementation and the
implementations of [8], [9],[10] and a conventional
pipelined implementation are compared.

HMAC Frequency
(MHz)

Throughput
(Mbps)

[8] 82.0 328.0
[9] - 555.0

[10] - 1500.0
Conv.Impl 47.1 1507.0

Proposed 34.7 2220.8

Table 2. Throughput Comparison of proposed
and other alternatives HMAC implementations

From the experimental results, there is more than

50% increase of the throughput compared to the
conventional implementation and that in [10].The
introduced area overhead for the HMAC core is

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

approximately 11.5% compared to the conventional
implementation that was implemented by the
authors.

Unfortunately for the reasons that we have
already mentioned before, so far not many works
concerning HMAC with SHA-256 have been
presented and thus the comparison is done among
only three alternatives and one that has been
developed by the authors in order to make fair
comparisons.

5 Conclusion

The pre-computation technique has been
presented in this paper introducing a pre-
computational stage which allows timing
transformation of the calculation formulas to
generate disjoint intermediate signals and spatial
transformation to the pipeline stages. This technique
is forming a generic methodology to design high-
speed implementations for various families of hash
functions.

 A high-speed implementation of the SHA-1
hash function and the SHA-256 hash function was
developed in this paper applying the pre-
computation technique. It is the first known
implementation that exceeds the 2.5 Gbps
throughput limit (for the XILINX FPGA technology
- v150bg352 device) for SHA-1 hash function and
the 2 Gbps throughput limit for SHA-256 hash
function. From the experimental results, it was
proved that SHA-1 proposed implementation was
about 40% faster than any previously known
implementation whereas SHA-256 proposed
implementation was more than 25% faster than the
conventional pipelined implementation.

 Additionally, the introduced area penalty was
approximately 7.5% compared to the nearest
performing implementation for SHA-1 and 9.5% for
SHA-256 compared to the conventional pipelined
implementation. This makes both implementations
suitable for every new wireless and mobile
communication application that urges for high-
performance and small-sized solutions.

Acknowledgments
We thank European Social Fund (ESF),

Operational Program for Educational and
Vocational Training II (EPEAEK II) and
particularly the program PYTHAGORAS, for
funding the above work.

References:

[1] FIPS PUB #HMAC, The Keyd-Hash Message
Authentication Code, National Institute of
Standards and Technology, 2001.

[2] X. Wang, Y.L. Yin, H. Yu, Finding collisions
in the full SHA1, Crypto 2005.

[3] H. Dobbertin, The Status of MD5 After a
Recent Attack, RSALabs’ CryptoBytes, Vol.2,
No.2, Summer 1996.

[4] SHA-2 Standard, National Institute of
Standards and Technology (NIST), Secure
Hash Standard, FIPS PUB 180-2.

[5] N.Sklavos, and O. Koufopavlou,
Implementation of the SHA-2 Hash Family
Standard Using FPGAs, Journal of
Supercomputing, Kluwer Academic Publishers,
Vol. 31, 2005, pp. 227-248.

[6] N. Sklavos, and O. Koufopavlou, On the
Hardware Implementations of the SHA-2(256,
384, 512) Hash Functions, IEEE International
Symposium on Circuits & Systems (ISCAS'03),
Vol. V, 2003, pp. 153-156.

[7] Helion Technology Ltd. Web page, available at
http://www.heliontech.com.

[8] Selimis, G., Sklavos, N., and Koufopavlou, O.,
VLSI Implementation of the Keyed-Hash
Message Authentication Code for the Wireless
Application Protocol, IEEE International
Conference on Electronics Circuits and
Systems (ICECS'03), 2003, pp.24-27.

[9] Interface Masters , Inc. Web page available at
http://www.interfacemasters.com/products

[10] SnapGearInternet Security Appliances Ltd,
Web page available at
http://www.cankey.com.cn

Proceedings of the 5th WSEAS Int. Conf. on MULTIMEDIA, INTERNET AND VIDEO TECHNOLOGIES, Corfu, Greece, August 17-19, 2005 (pp130-135)

