
A Neural Network Realization of Scheduling in Grid Computing
Environment

MOHAMMAD KALANTARI, KAZEM AKBARI
 Computer Engineering Department

Amirkabir University of Technology (Tehran Polytechnic)
 TEHRAN-IRAN

Abstract: - The Computational Grids provide a promising platform for efficient execution of computational and
data intensive applications. Scheduling in such environments is challenging because target resources are
heterogeneous and their load and availability varies dynamically. In this paper, we propose a mathematical neural
network based scheduling solution for grid computing environment. Using mathematical method guarantees rapid
convergenc that is essential for such environments with proliferation of resources.

Key-Words: - Scheduling, Grid Computing, Neural Networks.

1 Introduction

Grid scheduling is intrinsically more complicated
than local scheduling of resources, because it must
manipulate large-scale resources across management
boundaries. In such a dynamic distributed computing
environment, resource availability varies
dramatically, so scheduling becomes quite
challenging. There have been extensive research
activities on scheduling problems in distributed
systems that must be extended for the purpose of grid
computing environment [1,2,3].

Most problems in scheduling area are NP-
Complete. This fact implies that an optimal solution
for a large scheduling problem is quite time-
consuming. Therefore, some researchers translated
the job-scheduling problem into a format of linear
programming or K-out-of-N rule and mapped it into
an appropriate neural network structure to obtain a
reasonable solution [4,5,6].

Neural networks for combinatorial optimization
problems were first introduced by Hopfield and Tank
in 1985 [7]. They used the predefined energy
function E which follows the quadratic form:

 (1)
11 1

i

N

i
iji

N

i

N

j
ij IVVVWE ∑∑∑

== =

+=

where ijW is the strength of a synaptic link between
the ith and the jth neuron where the condition of

jiij WW = must be always satisfied. Note that iI is
constant bias of the ith neuron. Hopfield gives the
motion equation of the ith neuron:

 (2)
i

ii

V
EU

dt
dU

∂
∂

−−=
τ

where the output follows the continuous,
nondecreasing, and differentiable function called
sigmoid function:
 () ()() (3) 1tanh

2
1

0 +== iii UUfV λ

where 0λ is constant and is called gain which
determines the slope of the sigmoid function.

Since Wilson and Pawley strongly criticized the
neural network methods (specifically Hopfield
model) for optimization problems [8], and in
addition, after the publication of discouraging report
of Paielli [9] regarding the drawbacks of Hopfield
nets (e.g., convergence to local minima, limited
capacity of network, and disability for solving hard-
learning problems), it has been widely believed that
the neural network methods are not suitable for
optimization problems. But Takefuji and others in
their continuous and unfailing efforts have
demonstrated the capability of the artificial neural
networks (i.e., Hopfield-like method) for solving
optimization problems, over the best known
algorithms and methods. They found that the use of
decay term)/(τiU− in Eq.(2) increases the
computational energy function E under some
conditions instead of decreasing it [10].

In his method, Takefuji exploits the topology of
Hopfield net in conjunction with both mathematical
method of McCulloch-Pitts (with or without

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

hysteresis) and Maximum (winner-take-all) function
to tackle and solve the problems [10]. His works
cover a wide variety of professional fields including
game theory, computer science, graph theory,
molecular biology, VLSI computer aided design,
communication, and computer networks.

In [1] Yueh-Min Huang et al. represented a
Hopfield neural network based solution to scheduling
multiprocessor job with resource and timing
constrains. In their model, they assume that all
resources are homogeneous and available for
scheduling at time 0, and during scheduling, no
resources are added to or deleted from system, which
is rational for such a system. However in Grid
computing environments, resources are
heterogeneous and can be added or deleted
dynamically. This work aims to overcome these new
constraints by using mathematical neural model
rather than Hopfield neural method.

The rest of this paper is organized as follows.
Section 2 contains an overview of the mathematical
neural network model. In section 3 our grid
computing environment is described. In section 4 the
scheduling problem is described in detail and mapped
onto a neural network, followed by simulation results
in section 5. Finally, we will summarize the
outcomes and future work in section 6.

2 Mathematical Neural Network Model

The mathematical model of the artificial neural
network consists of two components; neurons and
synaptic links. The output signal transmitted from a
neuron propagates to other neurons through the
synaptic links. The state of the input signal of a
neuron is determined by the linear sum of weighted
input signals from the other neurons where the
respective weight is strength of the synaptic links.
Every artificial neuron has the input U and the
output V. The output of the ith neuron is given by

()ii UfV = where f is called the neuron’s input/output
function. The interconnections between the ith
neuron and other neurons are determined by the
motion equation. The change of the input state of the
ith neuron is given by the partial derivations of the
computational energy function E with respect to the
output of the ith neuron where E follows an n-
variable function: ()nVVVE ,...,, 21 . The motion
equation of the ith neuron is given by:

 (4)),...,,(21

ii

ni

dV
dE

V
VVVE

dt
dU

−=
∂

∂
−=

In general, the goal of neural computation is to
optimize the fabricated computational energy
function. The energy function not only determines
how many neurons should be used in the system but
also it specifies the strength of synaptic links
between neurons. Indeed, energy function is
constructed from information in the given problem,
considering the required constraints and/or cost
function. Practically, it is usually easier to calculate
the motion equation (partial differential of the energy
function) than the energy function itself. The
superiority of the motion equation over energy
function can be articulated as follows: its simplicity
(step by step computations and ease of formulation),
binary behavior, ease of application, and the
flexibility in which all constraints can be
incorporated. It also resolves the deficiencies of the
Hopfield net which was discussed earlier. The energy
function, however, can be defined:

 (5) i
i dV

dt
dUdEE ∫ ∫−==

In order to numerically solve the partial differential
equation or the differential equation to determine the
value of motion equation, the first order Euler
method is widely used where it is the simplest among
the existing numerical methods. Therefore, based
upon the first order Euler method the value of

)1(+tU is determined as below:
 (6)).()()1(ttUtUtU ∆∆+=+
where)(tU∆ is given by Eq. (4) and termination
condition is given by:
 (7) 0)(=∆ tU
The condition of the Eq. (7) implies that the
constraints are all satisfied.

3 System Model

The Grid computing environment in this work
(shown in Fig.1) consists of n sites, nSSS ,..., 21 ;
where a site ()niSi ≤≤1 consists of a number of
heterogeneous computational resources. Within each
local site, there is a forecasting system such as PACE
(Performance Analysis and Characterization
Environment) toolkit [11,12] to predict the Job’s
execution time on the candidate resources prior to
run time. Selection of candidate resources is

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

accomplished via a selector component in each site.
Candidate resources are those which are available at
the time or within a predetermined time. To avoid the
race condition we can reserve the candidate
resources. The scheduling mechanism in our work is
done in batch-mode, in which arriving jobs are
collected at prescheduled times and are scheduled as
a meta-task when a scheduling event is triggered. The
following two steps are accomplished for scheduling;
first scheduler sends the characteristics of jobs to
each site; and then in each site, selector and predictor
components return whatever required for scheduling
to the scheduler (i.e. a list of candidate resources and
the execution time of each job on each resource).
Scheduler uses a neural network based scheduling
mechanism (see section 4) along with the information
for the scheduling purposes. For the sake of
simplicity, we ignore the communication overhead in
this work.

 .…..

Fig.1 System Model

4 Problem Formulation With Neural
Network Method

Our scheduling approach considers N jobs to be
run on some machines (resources) and the following
assumptions are made regarding the problem domain.
First, the execution time of each job on each machine
is predetermined (see section 3). Second, a job can
not be assigned to different machines, implying that
no job migration is allowed between machines.
Third, resources are added to or deleted from
environment dynamically and the time of addition or
deletion is estimated by predictor component. The
constraints imposed to our model are a deadline(id)
for each job i and a processing time along with
available resources on systems.

Therefore, scheduling parameters comprise the
listed jobs, the required machines, and time variables
as depicted in Fig.2, where the “x” axis denotes the
“job” variable within a range from 1 to N (the total
number of jobs to be scheduled) and the “y” axis
represents the “machine” variable within a range
from 1 to M (the total number of machines) and the
“z” axis is for the “time” variable and k represents a
specific time which should be less than or equal to
T, the amount of total scheduling time. Thus, a state
variable ijkV is defined to indicate whether or not the
job i is executed on machine j at a certain time k. In
case of 1=ijkV , it denotes that the job i is run on
machine j at the time k; otherwise, 0=ijkV . It should
be noted that, each ijkV corresponds to a neuron of the
neural network.

Fig.2 Three-dimensional modeling of problem

Mapping constraints into the motion equation is as

follows:

jki

N

ii
i

ijk
ijk VVA

dt
dU

1

1
1 1

*∑
≠
=

−= -1st inhibitory factor

11

1
1 11 1

* kij

M

jj
j

T

k
ijkVVB ∑∑

≠
= =

− -2nd inhibitory factor

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− ∑

=

T

k
ijijk PVLC

11

1
2 -3rd inhibitory or 1st

 excitatory factor.

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− ∑

=

N

i
jkiVKD

11

1
1*2* -4th inhibitory factor

()() 1* −−− idkHE -5th inhibitory factor

Selector & Predictor
Component

 ….

Site 1

 ….

Site 2

 … …

Site n

Scheduler

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

()iij dPHF −− * -6th inhibitory factor
(8)

Moreover, the effects of overall inhibitory and
excitatory factors in the motion equation can be
summarized as :

• The first inhibitory factor states that a
machine j can only execute one job i at a
certain time k.

• The second inhibitory factor states that no
migration is allowed, on the other word, job i
can only be executed on machine j or
machine 1j at any time.

• The third inhibitory factor or the first
excitatory factor states that the time spent by
job i should be equal to ijP , where ijP is the
estimated execution time of job i on machine
j.

• The fourth inhibitory factor states that only
one job can be executed on a specified
machine and at a certain time.

• The fifth and sixth inhibitory factors state
that no violation of deadline is allowed.

The functions L, K and H is defined as follow:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

<
=
>

=
0 1-
0 0
 0 1

)(
α
α
α

αL , ()
⎭
⎬
⎫

⎩
⎨
⎧

<
≥

=
0 0
 0

α
αα

αK ,

()
⎭
⎬
⎫

⎩
⎨
⎧

≤
>

=
0 0
 0 1

α
α

αH

we have used hysteresis McCulloch-Pitts neuron
model where the input/output function of the ith
hysteresis neuron is given by:

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
<
>

==
otherwiseunchenged

LTPUif
UTPUif

UfV i

i

ii

 0
 1

)((9)

where UTP and LTP are upper trip point and lower
trip point respectively, as well as a modified form of
Maximum Neuron Model. Maximum neuron model is
composed of M cluster where each cluster consists of
n neurons. In this model “winner-take-all” function is
embedded. This implies that one and only one neuron
out of n neurons in every cluster with a maximum
value is encouraged to be fired. The corresponding
input/output function of the ith neuron in the mth
cluster is given by:

{ }

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>≥
=

=

otherwise

jiforUU
andUUUif

V mjmi

mnmmi

mi

 0

 ,...,max 1 1

 (10)

In the maximum neuron model it is always
guaranteed to generate satisfactory solutions [10].
The advantages of the maximum neural model can be
summarized [10]:
• Every local minimum is one of the acceptable

solutions, while other existing neural models
cannot guarantee that.

• Tuning of coefficient parameters for the
activation function is not required.

• The termination condition of the equilibrium
state is clearly defined by a simple
mathematical formula.

It should be noted that there are some important
points in our method, which can be summarized in
the following:
• Although it is possible to find the exact form of

energy function E, but we do not need it in the
process because of the motion equation

dVdEdtdU // −= . When we use dtdU / to
find a new state of the system, the energy
function will be employed implicitly.

• The termination condition and the maximum
neuron model together cause the convergence of
system in the global minimum.

• By using the motion equation method, in fact we
are employing a sparsely connected network
whenever we need that, as opposed to the
Hopfield’s fully connected networks. Therefore,
for the big problems there is no need to employ
a huge number of synaptic connections which
would cause a spurious convergence.

The corresponding algorithm is given in Fig.3.

5 Simulation Results

The neural network based scheduling algorithm
described in the previous sections has been
implemented in C and executed on computer with
Pentium IV processor and 512 mega byte RAM. For
the evaluation of the system’s performance, different
examples of all sizes: small, medium and large were
run for 10 times. Some of the experiments and the
overall results are listed below.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

The input data for the first, the second, and the
third experiments and their corresponding results
have been shown in Fig.4, 5 and 6 respectively.
In the first example, some machines are not available
at time 0. We compute the maximum execution time
of each job on each machine and use these values as
inputs to the algorithm.

 Fig.3 The Scheduling Algorithm

 m0 m1 m2
Job0 7 10 6
Job1 5 2 2
Job2 10 12 20
Job3 1 4 12
Job4 7 11 2
Job5 1 6 10
Job6 6 3 10

maximum
finishing
time of

each job
on each
machine

m0 m1 m2

Job0 10 12 6
Job1 8 4 2
Job2 13 14 20
Job3 4 6 12
Job4 10 13 2
Job5 4 8 10
Job6 9 5 10

 m0 m1 m2
time of availability 3 2 0

 Job0 Job1 Job2 Job3

deadline 16 2 16 16

 Job4 Job5 Job6

deadline 16 16 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T ime

1

2

3

Job2 Job5

Job0 Job6

Job1 Job3 Job4

Fig.4 The first experiment

However if the deadlines of all jobs are set to 15 (The
minimum makespan), our algorithm can’t be
converged.
In Fig.6 no constraints on availability imposed but
the problem size has been increased and the
deadlines of all jobs have been set to 8.

 m0 m1 m2

Job0 5 4 8
Job1 20 5 3
Job2 6 10 4
Job3 10 4 2
Job4 20 6 5

 m0 m1 m2
time of availability 0 0 0

 Job0 Job1 Job2 Job3 Job4

deadline 6 10 7 10 10

0 1 2 3 4 5 6 7 8 9 10

T ime

1

2

3

Job2

Job0

Job1 Job3 Job4

Fig.5 The second experiment

Algorithm:
begin
 initialize Uijks randomly.
 while (a set of conflicts is not empty) do
 begin
 for i:=1 to N do
 for j:=1 to M do
 for k:=1 to T do
 begin

ijkijkijk UUU ∆+=
)(ijkijk UfV =
 end

 for i:=1 to N do
 begin
 1. find the maximum Uijk
 2. determine a segment (j) in which the
 maximum Uijk exists. If there is tie remove it
 randomly.
 3. The output of the other segment’s neurons
 is set to zero.
 end
 end
end.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

 m0 m1 m2 m3 m4 m5
Job0 10 9 11 12 2 12
Job1 4 8 12 16 1 66
Job2 8 10 13 11 4 50
Job3 20 12 14 10 8 4
Job4 40 14 16 9 14 3
Job5 12 4 15 14 80 1
Job6 6 3 22 17 44 14
Job7 2 12 34 18 52 17
Job8 3 16 4 10 61 12
Job9 1 14 4 4 12 19
Job10 10 20 8 3 44 20

0 1 2 3 4 5 6 7 8

T ime

1

2

3

4

5

6

Job6 Job7

Job1

Job8

Job9 Job10

Job0 Job2

Job3 Job4 Job5

Fig.6 The third experiment

Table 1 shows the average number of iterations and
execution time of algorithm for different examples of
different sizes. The number of iteration and the
execution time of program decrease or increase
smoothly when the problem size increases, as shown
in Table 1.

No. # of Job # of
machines

Avg # of
Iteration

Avg Conv.
Time(sec.)

1 7 3 280 <1
2 5 3 192 <1
3 11 5 65 <1
4 20 15 852 6
5 100 50 1152 11

Table 1: The overall results

6 Conclusion and Future Work

We have presented a neuro-based scheduling
solution for grid computing environment. As
mentioned before, if all machines are available at
time 0, our algorithm always gives the scheduling
solution with respect to the given deadlines. Anyway,
rapid convergence is an important characteristic of
the proposed solution.

In the future, a neuro-based scheduling algorithm
which includes communication overhead will be
presented.

References:
[1] Y. M. Huang and R. M. Chen, Scheduling
multiprocessor job with resources and timing
constraints using neural networks. IEEE Transaction
on system, man, and cybernetics, Vol. 29, No. 4,
August 1999.
[2] T. D. Braun, Howard Jay Siegel, Noah Beck, A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous
distributed computing systems, Journal of Parallel
and Distributed Computing, 2001.
[3] N. Fujimoto and K. Hagihara, A comparison
among grid scheduling algorithms for independent
coarse-grained tasks. IEEE Int. Symp. on
Applications and the Internet Workshops
(SAINTW’04), 2004.
[4] Y. P. S. Foo and Y. Takefuji, Integer linear
programming neural networks for job-shop
scheduling, IEEE Int. Conf. Neural Networks, 1991,
pp. 1361-1366.
[5] C. Y. Chang and M. D. Jeng, Experimental study
of a neural model for scheduling job shop, IEEE Int.
Conf. System, Man, Cybernetics, 1995, Vol. 1, pp.
536-540.
[6] J. M. Gallone, F. Charpillet, and F. Alexandre,
Anytime scheduling with neural networks, Proc.
1NRIA/IEEE Symp. 1995.
[7] J. J. Hopfield and D. W. Tank, Neural
computation of decision in optimization, Journal of
Biological Cybernetics, Vol. 52, 1985, pp. 141-152.
[8] G. V. Wilson and G. S. Pawley, On stability of
the traveling salesman problem algorithm of
Hopfield and Tank, Biological Cybernetics, Vol 58,
1988, pp. 63-70.
[9] R. A. Paielli, Simulation tests of the optimization
method of Hopfield and Tank using neural networks,
NASA Technical Memorandom 101047, 1988.
[10] Yoshiyasu Takefuji, Neural Network Parallel
Computing, Kluwer Academic Publishers, 1992.
[11] G. R. Nudd, D. J. Kerbyson, E. Papaefastathiou,
J. S. C. Perry and D. V. Wilcox, PACE: A toolset for
the performance prediction of parallel and distributed
systems, In International journal of High
Performance Computing, 1999.
[12] L. He, S. A. Jarvis, D. P. Spooner, X. Chen and
G. R. Nudd, Dynamic scheduling of parallel jobs
with Qos demands in multiclusters and Grids, In
Proc. of 5th IEEE/ACM Int. Workshop on Grid
Computing, 2004.

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)

