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Abstract: - The Computational Grids provide a promising platform for efficient execution of computational and 
data intensive applications. Scheduling in such environments is challenging because target resources are 
heterogeneous and their load and availability varies dynamically. In this paper, we propose a mathematical neural 
network based scheduling solution for grid computing environment. Using mathematical method guarantees rapid 
convergenc that is essential for such environments with proliferation of resources. 
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1 Introduction 

Grid scheduling is intrinsically more complicated 
than local scheduling of resources, because it must 
manipulate large-scale resources across management 
boundaries. In such a dynamic distributed computing 
environment, resource availability varies 
dramatically, so scheduling becomes quite 
challenging. There have been extensive research 
activities on scheduling problems in distributed 
systems that must be extended for the purpose of grid 
computing environment [1,2,3]. 

Most problems in scheduling area are NP-
Complete. This fact implies that an optimal solution 
for a large scheduling problem is quite time-
consuming. Therefore, some researchers translated 
the job-scheduling problem into a format of linear 
programming or K-out-of-N rule and mapped it into 
an appropriate neural network structure to obtain a 
reasonable solution [4,5,6]. 

Neural networks for combinatorial optimization 
problems were first introduced by Hopfield and Tank 
in 1985 [7]. They used the predefined energy 
function E which follows the quadratic form:               
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where ijW  is the strength of a synaptic link between 
the ith and the jth neuron where the condition of 

jiij WW =  must be always satisfied. Note that iI  is 
constant bias of the ith neuron. Hopfield gives the 
motion equation of the ith neuron: 
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where the output follows the continuous, 
nondecreasing, and differentiable function called 
sigmoid function: 
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where 0λ  is constant and is called gain which 
determines the slope of the sigmoid function. 

Since Wilson and Pawley strongly criticized the 
neural network methods (specifically Hopfield 
model) for optimization problems [8], and in 
addition, after the publication of discouraging report 
of Paielli [9] regarding the drawbacks of Hopfield 
nets (e.g., convergence to local minima, limited 
capacity of network, and disability for solving hard-
learning problems), it has been widely believed that 
the neural network methods are not suitable for 
optimization problems.  But Takefuji and others in 
their continuous and unfailing efforts have 
demonstrated the capability of the artificial neural 
networks (i.e., Hopfield-like method) for solving 
optimization problems, over the best known 
algorithms and methods. They found that the use of 
decay term )/( τiU−  in Eq.(2) increases the 
computational energy function E under some 
conditions instead of decreasing it [10]. 

In his method, Takefuji exploits the topology of 
Hopfield net in conjunction with both mathematical 
method of McCulloch-Pitts (with or without 
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hysteresis) and Maximum (winner-take-all) function 
to tackle and solve the problems [10]. His works 
cover a wide variety of professional fields including 
game theory, computer science, graph theory, 
molecular biology, VLSI computer aided design, 
communication, and computer networks.    

In [1] Yueh-Min Huang et al. represented a 
Hopfield neural network based solution to scheduling 
multiprocessor job with resource and timing 
constrains. In their model, they assume that all 
resources are homogeneous and available for 
scheduling at time 0, and during scheduling, no 
resources are added to or deleted from system, which  
is rational for such a system. However in Grid 
computing environments, resources are 
heterogeneous and can be added or deleted 
dynamically. This work aims to overcome these new 
constraints by using mathematical neural model 
rather than Hopfield neural method. 

The rest of this paper is organized as follows. 
Section 2 contains an overview of the mathematical 
neural network model. In section 3 our grid 
computing environment is described. In section 4 the 
scheduling problem is described in detail and mapped 
onto a neural network, followed by simulation results 
in section 5. Finally, we will summarize the 
outcomes and future work in section 6. 
 
 
2 Mathematical Neural Network Model 

The mathematical model of the artificial neural 
network consists of two components; neurons and 
synaptic links. The output signal transmitted from a 
neuron propagates to other neurons through the 
synaptic links. The state of the input signal of a 
neuron is determined by the linear sum of weighted 
input signals from the other neurons where the 
respective weight is strength of the synaptic links. 
Every artificial neuron has the input U  and the 
output V. The output of the ith neuron is given by 

( )ii UfV =  where f is called the neuron’s input/output 
function. The interconnections between the ith 
neuron and other neurons are determined by the 
motion equation. The change of the input state of the 
ith neuron is given by the partial derivations of the 
computational energy function E with respect to the 
output of the ith neuron where E follows an n-
variable function: ( )nVVVE ,...,, 21 . The motion 
equation of the ith neuron is given by: 

      (4)            ),...,,( 21

ii

ni

dV
dE

V
VVVE

dt
dU

−=
∂

∂
−=  

In general, the goal of neural computation is to 
optimize the fabricated computational energy 
function. The energy function not only determines 
how many neurons should be used in the system but 
also it specifies the strength of synaptic links 
between neurons. Indeed, energy function is 
constructed from information in the given problem, 
considering the required constraints and/or cost 
function. Practically, it is usually easier to calculate 
the motion equation (partial differential of the energy 
function) than the energy function itself. The 
superiority of the motion equation over energy 
function can be articulated as follows: its simplicity 
(step by step computations and ease of formulation), 
binary behavior, ease of application, and the 
flexibility in which all constraints can be 
incorporated. It also resolves the deficiencies of the 
Hopfield net which was discussed earlier. The energy 
function, however, can be defined: 

       (5)                        i
i dV

dt
dUdEE ∫ ∫−==  

In order to numerically solve the partial differential 
equation or the differential equation to determine the 
value of motion equation, the first order Euler 
method is widely used where it is the simplest among 
the existing numerical methods. Therefore, based 
upon the first order Euler method the value of 

)1( +tU  is determined as below:  
       (6)                ).()()1( ttUtUtU ∆∆+=+  
where )(tU∆  is given by Eq. (4) and termination 
condition is given by: 
       (7)                                           0)( =∆ tU  
The condition of the  Eq. (7) implies that the 
constraints are all satisfied. 
 
  
3 System Model  

The Grid computing environment in this work 
(shown in Fig.1) consists of n sites, nSSS ,..., 21 ; 
where a site ( )niSi ≤≤1  consists of a number of 
heterogeneous computational resources. Within each 
local site, there is a forecasting system such as PACE 
(Performance Analysis and Characterization 
Environment) toolkit [11,12] to predict the Job’s 
execution time on the candidate resources prior to 
run time. Selection of candidate resources is 
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accomplished via a selector component in each site. 
Candidate resources are those which  are available at 
the time or within a predetermined time. To avoid the 
race condition we can reserve the candidate 
resources.  The scheduling mechanism in our work is 
done in batch-mode, in which arriving jobs are 
collected at prescheduled times and are scheduled as 
a meta-task when a scheduling event is triggered. The 
following two steps are accomplished for scheduling; 
first scheduler sends the characteristics of jobs to 
each site; and then in each site, selector and predictor 
components return whatever required for scheduling 
to the scheduler (i.e. a list of candidate resources and 
the execution time of each job on each resource). 
Scheduler uses a neural network based scheduling 
mechanism (see section 4) along with the information 
for the scheduling purposes. For the sake of 
simplicity, we ignore the communication overhead in 
this work. 
 
 
 
 
 
                                             .….. 
 
 
 
 
 
 

Fig.1 System Model 
 
 

4 Problem Formulation With Neural 
Network Method 

Our scheduling approach considers N jobs to be 
run on some machines (resources) and the following 
assumptions are made regarding the problem domain. 
First, the execution time of each job on each machine 
is predetermined (see section 3). Second, a job can 
not be assigned to different machines, implying that 
no job migration is allowed between machines. 
Third, resources are added to or deleted from 
environment dynamically and the time of addition or 
deletion is estimated by predictor component. The 
constraints imposed to our model are a deadline( id ) 
for each job i and a processing time along with 
available resources on systems. 

Therefore, scheduling parameters comprise the 
listed jobs, the required machines, and time variables 
as depicted in Fig.2, where the “x” axis denotes the 
“job” variable within a range from 1 to N (the total 
number of jobs to be scheduled) and the “y” axis 
represents the  “machine” variable within a range 
from 1 to M (the total number of machines) and the 
“z” axis is for the “time” variable and k represents a 
specific  time which should be less than or equal to 
T, the amount of  total scheduling time. Thus, a state 
variable ijkV  is defined to indicate whether or not the 
job i is executed on machine j at a certain time k. In 
case of 1=ijkV , it denotes that the job i is run on 
machine j at the time k; otherwise, 0=ijkV . It should 
be noted that, each ijkV  corresponds to a neuron of the 
neural network. 
 

 
Fig.2 Three-dimensional modeling of problem 

 
Mapping constraints into the motion equation is as 

follows: 
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( )iij dPHF −− *                    -6th inhibitory factor 
(8) 

 
Moreover, the effects of overall inhibitory and 
excitatory factors in the motion equation can be 
summarized as : 

• The first inhibitory factor states that a 
machine j can only execute one job i at a 
certain time k. 

• The second inhibitory factor states that no 
migration is allowed, on the other word, job i 
can only be executed on machine j or 
machine 1j  at any time. 

• The third inhibitory factor or the first 
excitatory factor states that the time spent by 
job i should be equal to ijP , where ijP  is the 
estimated execution time of job i on machine 
j. 

• The fourth inhibitory factor states that only 
one job can be executed on a specified 
machine and at a certain time.   

• The fifth and sixth inhibitory factors state 
that no violation of deadline is allowed. 

 
The functions L, K and H is defined as follow: 
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we have used  hysteresis McCulloch-Pitts neuron 
model where the input/output function of the ith 
hysteresis neuron is given by:  

 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
<
>

==
otherwiseunchenged

LTPUif
UTPUif

UfV i

i

ii

       
                         0
                         1

)(           (9) 

where UTP and LTP are upper trip point and lower 
trip point respectively, as well as a modified form of 
Maximum Neuron Model. Maximum neuron model is 
composed of M cluster where each cluster consists of 
n neurons. In this model “winner-take-all” function is 
embedded. This implies that one and only one neuron 
out of n neurons in every cluster with a maximum 
value is encouraged to be fired. The corresponding 
input/output function of the ith  neuron in the mth 
cluster is given by:  
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In the maximum neuron model it is always 
guaranteed to generate satisfactory solutions [10]. 
The advantages of the maximum neural model can be 
summarized [10]: 
• Every local minimum is one of the acceptable 

solutions, while other existing neural models 
cannot guarantee that. 

• Tuning of coefficient parameters for the 
activation function is not required. 

• The termination condition of the equilibrium 
state is clearly defined by a simple 
mathematical formula. 

It should be noted that there are some important 
points in our method, which can be summarized in 
the following: 
• Although it is possible to find the exact form of 

energy function E, but we do not need it in the 
process because of the motion equation 

dVdEdtdU // −= . When we use dtdU /  to 
find a new state of the system, the energy 
function will be employed implicitly. 

• The termination condition and the maximum 
neuron model together cause the convergence of 
system in the global minimum.  

• By using the motion equation method, in fact we 
are employing a sparsely connected network 
whenever we need that, as opposed to the 
Hopfield’s fully connected networks. Therefore, 
for the big problems there is no need to employ 
a huge number of synaptic connections which 
would cause a spurious convergence. 

 
The corresponding algorithm is given in Fig.3.           
 
 
5 Simulation  Results 

The neural network based scheduling algorithm 
described in the previous sections has been 
implemented in C and executed on computer with 
Pentium IV processor and 512 mega byte RAM. For 
the evaluation of the system’s performance, different 
examples of all sizes: small, medium and large were 
run for 10 times. Some of the experiments and the 
overall results are listed below. 
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The input data for the first, the second, and the 
third experiments and their corresponding results 
have been shown in Fig.4, 5 and 6 respectively.   
In the first example, some machines are not available 
at time 0. We compute the maximum execution time 
of each job on each machine and use these values as  
inputs to the algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             Fig.3 The Scheduling Algorithm 

 
 

 m0 m1 m2 
Job0 7 10 6 
Job1 5 2 2 
Job2 10 12 20 
Job3 1 4 12 
Job4 7 11 2 
Job5 1 6 10 
Job6 6 3 10  

maximum 
finishing 
time of 

each job 
on each 
machine 

m0 m1 m2 

Job0 10 12 6 
Job1 8 4 2 
Job2 13 14 20 
Job3 4 6 12 
Job4 10 13 2 
Job5 4 8 10 
Job6 9 5 10  

 
 

 m0 m1 m2 
time of availability 3 2 0 

 
 Job0 Job1 Job2 Job3 

deadline 16 2 16 16 

 Job4 Job5 Job6 

deadline 16 16 16 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T ime

1

2

3

Job2 Job5

Job0 Job6

Job1 Job3 Job4

Fig.4 The first experiment 
 

However if the deadlines of all jobs are set to 15 (The 
minimum makespan), our algorithm can’t be 
converged.  
In Fig.6 no constraints on availability imposed but 
the problem size has been increased and the 
deadlines of all jobs have been set to 8. 
 

 m0 m1 m2

Job0 5 4 8 
Job1 20 5 3 
Job2 6 10 4 
Job3 10 4 2 
Job4 20 6 5  

 m0 m1 m2 
time of availability 0 0 0 

 
 Job0 Job1 Job2 Job3 Job4 

deadline 6 10 7 10 10 
 

 

0 1 2 3 4 5 6 7 8 9 10

T ime

1

2

3

Job2

Job0

Job1 Job3 Job4

Fig.5 The second experiment 
 
 
 
 
 
 

Algorithm: 
begin 
  initialize Uijks randomly. 
  while (a set of conflicts is not empty) do 
   begin 
    for i:=1 to N do 
      for j:=1 to M do 
        for k:=1 to T do 
          begin  
         

ijkijkijk UUU ∆+=  
         )( ijkijk UfV =  
          end 
       
    for i:=1 to N do 
     begin 
     1. find the maximum Uijk 
     2. determine a segment (j) in which the     
     maximum Uijk exists. If there is tie remove it    
     randomly. 
     3. The output of the other segment’s neurons  
     is set  to zero. 
    end    
  end 
end. 
   

Proceedings of the 5th WSEAS Int. Conf. on SIMULATION, MODELING AND OPTIMIZATION, Corfu, Greece, August 17-19, 2005 (pp55-60)



 m0 m1 m2 m3 m4 m5 
Job0 10 9 11 12 2 12 
Job1 4 8 12 16 1 66 
Job2 8 10 13 11 4 50 
Job3 20 12 14 10 8 4 
Job4 40 14 16 9 14 3 
Job5 12 4 15 14 80 1 
Job6 6 3 22 17 44 14 
Job7 2 12 34 18 52 17 
Job8 3 16 4 10 61 12 
Job9 1 14 4 4 12 19 
Job10 10 20 8 3 44 20 

 

0 1 2 3 4 5 6 7 8

T ime

1

2

3

4

5

6

Job6 Job7

Job1

Job8

Job9 Job10

Job0 Job2

Job3 Job4 Job5

Fig.6 The third experiment 
 

Table 1 shows the average number of iterations and 
execution time of algorithm for different examples of 
different sizes. The number of iteration and the 
execution time of program decrease or increase 
smoothly when the problem size increases, as shown 
in Table 1. 
 

No. # of Job # of 
machines 

Avg # of 
Iteration 

Avg Conv. 
Time(sec.) 

1 7 3 280 <1 
2 5 3 192 <1 
3 11 5 65 <1 
4 20 15 852 6 
5 100 50 1152 11 

Table 1: The overall results 
 
6 Conclusion and Future Work 

We have presented a neuro-based scheduling 
solution for grid computing environment. As 
mentioned before, if all machines are available at 
time 0, our algorithm always gives the scheduling 
solution with respect to the given deadlines. Anyway, 
rapid convergence is an important characteristic of 
the proposed solution.  

In the future, a neuro-based scheduling algorithm 
which includes communication overhead will be 
presented.  
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