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Abstract: - A new approach for contour data compression is presented in the paper – Cartesian co-ordinates of an input 
contour are processed in such a way that final contour is represented by one-dimensional set of distances with constant, 
regular angle between them. The selection of vertices and the final algorithm for contour compression are described. 
Comparison of proposed method with the Ramer algorithm was also performed. For comparison the mean square error 
and SNR criteria were used. Finally, results of the experiments and advantages and drawbacks of proposed method  
are discussed. 
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1 Introduction 
Contours can be treated as important image structures 
for both coding and recognition. Contour processing, 
including contour compression is widely used in such 
common applications as topographic or weather maps 
preparation, character recognition, processing of medical 
images, image compression etc. Contour processing  
is also required in computer vision e.g. robot guidance 
or non-contact visual inspection.  
 One of the main approaches to the problem of 
contour compression is the time domain approach. The 
time domain methods are mainly based on the polygonal 
approximation scheme [5, 6, 7]. One of the most 
appreciated examples of such scheme is the Ramer 
algorithm [2], which uses the maximum distance of the 
curve from the approximating polygon as the fit 
criterion.    
 Most of the contour approximation methods use 
Cartesian representation. However, there are also 
schemes and applications where polar or Freeman’s 
(also generalised) [1, 3] chain coding representations are 
required.  
 
 
2 The algorithm (in general) 
The input contour for the proposed method is obtained 
from 256 x 256 grey-scale images by using the SSPCE 
contour extraction procedure [4].  

The input contour is represented by x and y vectors of 
Cartesian co-ordinates. The algorithm starts with finding 
the center of the input contour mass called the reference 
point O = . Co-ordinates x),( mm yx m, ym are defined as 
follows 
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where: 
N - number of contour vertices; 
xm-  mean value of the x vector;  
ym- mean value of the y vector. 

 The input contour is then shifted by xm and ym in both 
axes directions  
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 Centroid of the shifted contour is placed at (0,0) 
point, and therefore further computations are vastly 
simplified. Next, distances r between (0,0) point and 
shifted contour line are calculated. For that purpose, 
straight lines are passed through the (0,0) point. Slopes 
of these lines depend on earlier assignment of an angle 
between them. The angle between the contour lines is 
represented by the input parameter . The  value is 
assigned with respect to another input parameter I - 
accuracy of the procedure. The relation between 
parameters I and Φ  is as follows 
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 When accuracy I = 0 it means that Φ  = 2/π  and 
two perpendicular straight lines are passed. In case  
of I = 7 the Φ = 256/π  and 256 straight lines are 
passed. This is illustrated in Fig. 1 for I = 0 and I = 1. 
 

 
Fig. 1. Selection of output vertices a) I = 0 and b) I = 1. 

 Selected vertices are fully determined by the 
accuracy of the procedure and sequence of r distances. 
Therefore, representation of the approximated contour 
can be one-dimensional. This is the advantage of the 
presented method.  
 Distances r are given by the following equation 
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 The BCC  value depends on length of the input 
contour and the maximum values of x and y. The value 
of BCC for contours extracted from 256 x 256 images can 
be calculated as follows 

where: 
 xi, yi - co-ordinates of selected vertices. 

 Flowchart of the algorithm is depicted in Fig 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 

Fig. 2. Flowchart of the algorithm. 

where: 
VA - sequence of the output vertices; 
M - vector of slopes m;  
lM - length of vector M; 
xi, yi - co-ordinates of the input contour points;  
lCC  - length of the input contour;  
k  - counter. 

 
  a)   b)  
3 Applied measures  r  r r1 3 2 Presented method is related to the data compression 
problem. To evaluate its compression ability, the 
following compression ratio was introduced  
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where:  
BCC - total number of bits required for the input 

contour; 
BAC - total number of bits required for the output 

contour. 

bits82 ⋅⋅= ccCC lB  

 The full information required for contour 
reconstruction consists in collecting the following 
parameters: , rΦ  and co-ordinates of the reference point 
O.  
 Such output contour representation is sufficient only 
for regular contour shapes, as in Fig. 1. More 
complicated contours require additional information. 
Let’s consider contour presented in Fig. 3. 
 

 
Fig. 3. Selection of output vertices in case  

of generalized contour shapes. 
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 As it is seen, one straight line can mark more then 
two vertices. The position of each marked vertex in 
reference to the (0,0) point and the order of vertices are 
now necessary.  
 The total number of bits BAC of the output contour 
representation contains: 

− 3 bits for the accuracy of the procedure, 
− 16 bits for co-ordinates of the centroid, 
− 9 bits for distances r. 

 In addition for generalised shapes we need: 
− 1 bit to indicate the position of each vertex, 
− b bits to indicate the order of vertices. 

 The number of bits b is calculated in the following 
way 

nvnbb ⋅= ded_valuemaximum_co  

where: 
 ded_valuemaximum_conb  - number of bits required for 

maximum coded value; 
nv - number of selected vertices. 

 The mean square error (MSE) and signal-to-noise 
ratio (SNR) criteria were used as measures of quality of 
approximation. The MSE is defined by the following 
equation 
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where: 
id - distance between line of the input contour  

and vertex i. 

 The SNR is defined by the following formula 
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  AI I MSE SNR CR [%]
a) not used 3 - - 97,61 
b) used 3 32,39 22,09 96,45 
c) used 4 5,33 29,93 90,48 
d) used 5 1,14 36,63 79,30 where: 

VAR - variance of the input sequence. 

 From the practical point of view the values of MSE  
and SNR can not exceed the 4,0 and 30 dB, respectively. 
Otherwise, the details of contours are eliminated and 
level of introduced distortion can not be accepted. 
 
 
4 Results of experiments 
To visualise the experimental results a set of two test 
contours (one generalised and one regular) was selected. 
Selected contours are depicted in Fig. 4.  

 
 b)  a)  

Fig. 4. Test contours a) Serpent, b) Apple. 

 Selected results of the compression of the test 
contours are illustrated in Fig. 5 and Fig. 6. Fig. 5 shows 
the results of compression performed for the test contour 
Serpent. Fig. 5a presents the reconstruction obtained 
when the additional information is not used.  
 

 

 

 ba)  )  

 c)   d)  

Fig. 5. Results of compression of the  
test contour Serpent. 

AI – additional information 
 
 As it is seen, the maximum value of compression 
ratio, which can be obtained when contours of general 
shapes are processed, is less than 90%. It is also seen 
that maximum useful accuracy I is equal to 4. This 
however means that complexity of such compression 
process is very small and it can be done very fast. 
 The centroid method gives much better results, in 
sense of compression ratio and level of introduced 
distortion, for contours of regular shape. 

 



 

 
Fig. 6. Results of compression of the test contour Apple. 

      AI I MSE SNR CR [%]
a) not used 2 12,93 22,18 97,89 
b) not used 3 2,61 29,14 95,86 

c) not used 4 2,11 30,05 91,67 

d) not used 5 0,59 35,61 83,74 
 AI – additional information 

 When the accuracy of the procedure is assigned to 4, 
the compression ratio is much greater than 91% and 
values of MSE and SNR can be fully accepted. 
 Comparison between compression abilities of the 
proposed method and the Ramer algorithm can be done 
from Figs. 7 and 8. 
 

  

  

Fig. 7. The cenroid method versus the Ramer algorithm 
a) MSE versus CR, b) SNR versus CR. 
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Fig. 8. The centroid method versus the Ramer algorithm 
a) MSE versus CR, b) SNR versus CR. 

 Presented plots confirm that the compression abilities 
of the centroid method are much better in case of general 
shapes. Fig. 7 shows that the compression ratio for this 
type of contours can be even greater than 96%. Also 
96% of CR can be obtained when the Ramer algorithm is 
chosen, but the complexity of the proposed method is 
much less. 
 Fig. 8 shows however that the Ramer algorithm can 
be more useful for contours of general shapes. The 
maximum acceptable compression ratio for this 
algorithm is about 10% greater then for the proposed 
method. 
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5 Conclusions 
A new method for contour compression is presented in 
the paper. The main advantage of this method is “one-
dimensional” representation of the final contour. It was 
shown that proposed method, especially for the contours 
of regular shapes, has very good compression abilities. 
Compression ratio for the regular shapes can exceed 
96% - similarly as in case of the Ramer algorithm. 
However, the complexity of the centroid method is 
much less than that of Ramer. Therefore, the proposed 
method seems to be also very useful for contours of 
general shapes. Although the Ramer compression 
scheme ensures greater values of compression ratio, the 
new proposed method is much faster. 

 a)  

 b)  
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