
A User-Friendly Software Tool for Teaching 
of Industrial Automation Circuits Design and Simulation 

 
PANAGIOTIS MICHAEL1, STAMATIS MANESIS1, DIONISIS KANDRIS2 

1Department of Electrical and Computer Engineering, 
University of Patras,  
GR-26500, Patras,  

GREECE 
2Department of Electronics, School of Technological Applications, 

Technological Educational Institution (T.E.I.) of Athens, 
GR-12210, Athens, 

GREECE 
 
 

Abstract: - This paper describes a computer-based tool developed to design, simulate and verify Relay Ladder 
Circuits applied in industrial automation applications. By using a computer, a student can create Ladder 
circuits and extensively simulate, test and modify them. The visualized test of operation of a circuit can be 
performed either in real time or in a step-by-step procedure. In order to establish the proper operation of a 
sequential control system, the software developed includes a verification option by which possible errors can 
be identified and control logic can be investigated for various scenarios of inputs.  The software package is 
suitable for both educational and industrial practice purposes. 

 
Key-Words: - Industrial Automation, Relay Ladder Circuits, Computer Aided Design, Simulation 
 

1   Introduction 
In the majority of industrial applications, systems 
with hundreds or thousands of inputs and outputs are 
controlled by using programmable logic controllers 
(PLCs), which are the most suitable and widely 
employed control technology in factory automation. 
In such cases a logic controller must handle not only 
the normal operation sequence and synchronization 
of systems, but also the operator interface, error 
handling and recovery routines. The control program 
is usually written in a low-level language called 
Relay Ladder Logic and can be very complex for 
large systems. As PLC technology evolves into a 
family of control functions of many types at many 
different levels of complexity, there is an increasing 
need for software tools which enable the systematic 
development of real industrial applications.  
      Usually, an industrial automation system 
includes various levels of control and monitoring 
from the field controllers up to the supervising 
layers. There is an intensive research on theoretical 
subjects of the higher levels of this hierarchical 
scheme and consequently various software tools 
have been developed for modelling, simulation, 
execution and translation purposes. For example, a 
rule-based method has been presented to derive a 

Ladder-logic program from a high-level system 
model [1]. At lower levels of the hierarchical scheme 
mentioned above, there is a need to develop user 
friendly tools. These tools should have graphical 
interfaces with analytical mapping, and high 
computational efficiency in order to allow industry to 
adopt real applications of discrete event system 
theory. Many researchers work on the improvement 
of industrial logic creation and design. The problem 
that many try to solve is the perceived inefficiency of 
the current methods, which are very time-consuming 
and make use of primitive, low-level design 
languages [2]. Companies such as Rockwell and 
Siemens have already started to develop software 
tools for this purpose, e.g. VALID software from 
Siemens [3]. Various software tools have been 
developed for the modelling and verification of PLC-
based systems such as UPPAAL2k, KRONOS, 
Supremica and HyTech mainly for programs written 
in statement list language called also Boolean [4], 
[5], [6], [7]. The GRAFCET formalism that is often 
used in the implementation of PLCs is closely related 
to Petri net representations. Grafchart is a software 
tool for supervisor control system based on Grafcet, 
Petri nets and object oriented programming. It has  

mailto:stam.manesis@ee.upatras.gr
mailto:dkandris@ee.teiath.gr


 
Fig.1. Two forms of the same Boolean logic, the conventional (wiring) and the programming one (software). 

 
been converted to a Java platform under the name 
JGrafchart [8].Also, a graphical editor for state charts 
has been developed by ABB in Java language [9]. 
Some other tools initially developed for educational 
purposes, were further enhanced by their developers 
for general use like DESCO at Chalmers University, 
UMDES at the University of Michigan and CTCT at 
the University of Toronto [3]. 
      Programmable logic controllers are extensively 
used in factory automation. The first step an engineer 
has to do in order to program a PLC is to make a 
Relay - Ladder diagram. At this point, it is essential 
to make clear the difference between a relay-ladder 
program and a relay-ladder diagram. Actually, a 
relay-ladder program is a Boolean-based PLC 
program, while the relay ladder-diagram or 
automation circuit is the initial schematic featuring 
the very first form of a relay logic sequential control 
system. An example that illustrates the difference 
between these two forms is shown in Fig.1. 
     Usually, the design of a sequential control system 
starts with its automation circuit design. Next, the 
automation circuit operation is implemented by the 
development of a corresponding PLC program. 
Various programming languages are available for 
PLCs such as Boolean, Relay-Ladder Logic, 
Function Chart and Grafcet [10]. Therefore, there is 
an apparent need for the development of a software 
tool for ladder diagrams efficient design and off-line 
simulation. The software package presented in this 
paper, called ACS (Automatic Circuit Simulation), 
was developed in order to meet this specific need. It 
was originally designed for educational purposes in 
order to assist undergraduate and postgraduate 
students to design and simulate relay ladder diagrams 
of industrial automation systems. This is very 
important, given that systems of such a kind are by 
default difficult or even impossible to be available in 
an educational institution. However, as it is shown 
later on, ACS is a simple yet effective tool even for 

use in an industrial environment. One of its main 
features is its verification option. It enables the user 
to identify any malfunctions may occur during the 
real operation and investigate all alternative 
scenarios of operation. In this way, it becomes viable 
to apply several verification methods which have 
been developed for PLCs to test the safety and 
reliability of control systems [11], [12]. 

 

Fig. 2. Starting mask of ACS software tool. 
 
 
2   Software Tool Description 
ACS software tool, the starting mask of which is 
shown in Fig.2, requires an Intel P3 based or 
compatible personal computer with at least 256 MB 
RAM running Windows XP operating system. It 
requires a VGA graphics card with 128 MB memory.  
       ACS generates Ladder electric circuits as the 
first output form of the solution to an automation 
problem. Then, the Ladder electric circuit can be 
easily translated into a Ladder logic program 
according to IEC 61131 standard, which remains the 
most popular programming language for PLCs [13]. 
The program was developed by using Visual Basic 
v6.0 permitting some routines to handle dynamic 
lists in order to achieve maximum performance. A 
Graphics User Interface (GUI) has been developed 



with pull-down menus where the main functions are 
included. On the top there is an extensive library, as 
shown in Fig.3, with all the symbols needed to 
design the diagram (relays, time relays, buttons, 
contacts, limit switches etc.). The user can pick the 
appropriate symbols and place them in the desirable 
positions. The program can accept up to 100 pages, 
1200 relays and 8400 contact-type elements. The 
only limitation in the number of usable symbols is 
set by the memory available in the computer system 
used. Usually, 256 MB of memory is considered to 
be enough even for very large circuits. 

 

Fig. 3. User interface and workspace environment 
 

      The user can delete symbols, modify parameters 
(if any), save the work, print it and file it.  The edit 
menu offers various operations like cut, copy and 
paste of an entire page or of a part of it. Complicated 
circuits can be designed on successive pages, while 
each node can have as many connections as needed. 
The workspace scrolls so that any part of the design 
can easily be accessed. The file menu offers the 
typical options of open save and print of an entire 
program. The library of the program is user open and 
can accept circuits as elements or sub-libraries. 
There is also a well organized menu for on-line help. 
      The simulation menu offers two types of 
simulation. The first one is the real time simulation 
while the second one is the step-by-step simulation. 
In the real time simulation the program tests the 
circuit operation as it would be performed if it was 
implemented. In the step-by-step mode, the 
simulation is paused or triggered by the user so that 
any possible malfunctions can be detected and 
localised more easily than in real time simulation. In 
the simulation menu there is also the verification 
option by which it is possible to perform a more 
thorough and extensive test of a circuit operation. 
This can be done by setting limitations, virtual 
damages or undesired combinations and making the 
computer check and detect if these scenarios are 

possible to happen. This feature is very important 
because in large circuits this can’t be done manually 
or if it can be done it will take much more time and 
with a great probability of mistake.  
     During the drawing procedure of an automation 
circuit the components are coloured red. This means 
that no current flows through them. When the user 
starts the simulation the parts through which current 
flows are drawn green as it is shown in Fig.4. 
Thereby, the user can visualize the operation through 
the computer monitor. Using the menu the user has 
the ability to create virtual damages (i.e. a cable cut). 
In this way, it can be examined how the automation 
circuit responds under specific undesired situations. 
The verification option enables the examination of 
the circuit operation under various scenarios that the 
user can define. Usually the verification is based on 
manual test and the designer’s experience. But as the 
complexity increases, the more difficult becomes for 
a human to test all possible scenarios. This can be 
done by ACS in a much more reliable and faster 
way. The user can inform the system about specific 
combinations of inputs and outputs that are 
undesirable to be activated at the same time and the 
program can check if the current design allows such 
combinations.  

Library 

Menu bar 

{Workspace} 

 

Fig. 4. Automation Circuit under simulation 
 
 

3   Computation procedure 
Fig. 5 shows the main flowchart of ACS software 
tool. First, the user input is transformed into a circuit 
file which consists of a number of basic tables. After 
the circuit creation, the compilation phase follows. 
The run or simulation procedure can be performed 
only if the compilation has already been completed. 
During compilation, the program scans exhaustively 
the circuit column-by-column and element-by-
element, while in parallel creates a set of basic tables 
containing the characteristics of the various elements 
as shown in Fig.6. For each type of elements, a 



corresponding table is created with a definite 
sequence which the address counter follows during 
the simulation phase. The address counter and an 
instruction register are responsible for the Boolean 
logic satisfaction and can jump from table to table. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. ACS main flowchart. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Diagram of actions during simulation. 

 
 

4  Conclusion 
      This paper presented ACS, a computer aided 
software tool developed for designing, simulating 
and verifying Relay-Ladder diagrams under 
alternative scenarios through a verification process. 
      ACS software has definite advantages, which 
namely are: user friendly Graphics User Interface, 
visualization environment with analytical mapping, 
ability for accommodating complex circuits and 
verifying all possible scenarios of operation, option 
for virtual creation of malfunctions, choice of real 
time and step by step simulation, full detailed help 
menu, ease of installation and use, low hardware 
requirements. Due to these advantages, it is 
considered to be ideal for educational purposes while 
at the same time it is suitable for industrial use too. 

Acknowledgements: 
This work and its dissemination efforts have been 
funded by the Greek Operational Programme for 
Education and Initial Vocational Training (O.P. 
Education) in the context of action 2.2.2 entitled 
“Reformation of Undergraduate Studies Programs”. 
 User Input 
 
References: 
[1] M. A. Jafari and T. O. Boucher, A rule-based 
system for generating a Ladder logic control program 
from a high-level systems model, Journal of 
Intelligent Manufacturing, 1994; vol.5, pp.103-120. 
[2] M. R. Lucas and D. M. Tilbury, The Practice of 
Industrial Logic Design. Proceedings of the 
American Control Conference ACC 2004, pp.1350-
1355, Boston, Massachusetts, USA, 2004. 
[3] R. Boel, Unity in Diversity, Diversity in Unity: 
Retrospective and Prospective Views on Control of 
Discrete Event Systems, Report on panel discussion 
of the 5th Workshop on Discrete Event Systems 
WODES2000, Discrete Event Dynamic Systems: 
Theory and Applications, Kluwer 2002; vol.12, 
pp.253-264. 
[4] L. Bengtsson and L. Harju, Modeling and 
verification of PLC control in buses, Master Thesis 
report in Automation, EX034, Chalmers Univ. of 
Technology, Göteborg, Sweden, 2002.  
[5] W. Yi and K. G. Larsen, UPPAAL2k: An 
integrated tool environment for modeling, simulation 
and verification of real-time systems, 
www.docs.uu.se/docs/rtmv/ uppaal; 1999. 
[6] T. A. Henzinger, P. H. Ho and H.Wong-Toi, 
HyTech: A model checker for hybrid systems, 
International Journal of software tools for 
technology transfer, 1997; vol.1, pp.110-122.  
[7] S. Yovine, Kronos: A verification tool for real-
time systems, International Journal of software tools 
for technology transfer, 1997; vol.1, pp.123-133.  
[8] K. E. Årzen, JGrafchart, Grafchart home page, 
www.control.lth.se/~grafchart/; 2002. 
[9] G. O. Carlsson, Statecharts in ABB ControlIT, 
Master Thesis, Lund Institute of Technology, 2001.  
[10] F. D. Petruzella,. Programmable Logic 
Controllers, MacMillan/MacGraw-Hill, 1991. 
[11] I. Moon, Modeling programmable logic 
controllers for Logic verification, IEEE control 
systems magazine, Vol.14, No.2, Apr 1994,pp.53-59. 
[12] A. Falcione and B.H Krogh, Design Recovery 
for relay ladder logic, IEEE Control Systems 
Magazine, Vol. 13, No. 2, Apr 1993, pp.90 -98. 
[13] J. R. Wright, The Debate over which PLC 
programming language is the state-of-the-art, 
Journal of Industrial Technology, Vol.15, No.4, 
1999, pp.2-5. 

Item 
Item 
Node 
Node 
Relay 

: 

 
 

 

“Item” Table 

“Node” Table 

“Relay” Table 

Simulation Table 

“Relay ON” list

Compile Run 

Malfunction
s Generator 

Different 
Scenarios

Simulation 

Circuit File 

Verificatio

Circuit Compilation 

Real-time Step Simulation
Simulation

http://www.docs.uu.se/docs/rtmv/%20uppaal
http://www.control.lth.se/%7Egrafchart/

	PANAGIOTIS MICHAEL1, STAMATIS MANESIS1, DIONISIS KANDRIS2 

