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Abstract: This paper presents OntoShare, an automated ontology mapping and merging architecture for 
learning object retrieval and reuse. The architecture aims to offer contextual and robust ontology mapping and 
merging through hybrid unsupervised clustering techniques comprising of Formal Concept Analysis (FCA), 
Self-Organizing Map (SOM) and K-Means clustering incorporated with linguistic processing using WordNet. 
The merged ontology facilitates sharing and retrieval of learning objects from the Web or from different 
learning object repositories such as ARIADNE and Educause. Experimental results can be extended to other 
resources in databases or data warehouses.  
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1   Introduction 
Ontologies enrich description of learning object 
metadata in digital libraries or repositories such as 
ARIADNE or EDUCAUSE at different levels of 
granularity. Among the fundamental metadata are 
those defined by the Dublin Core, i.e., the title of 
the resource, the creator or organization, subject 
keywords, category (abstract, advertisement etc.), 
the URL, unique identifier (e.g. ISBN or ISSN) and 
language used. These metadata can be 
contextualized by information such as target 
audience’s age, mastery level or preferences and 
learning objectives [1], enabling adaptation of 
learning objects to different contexts of use.  
Technical implementations for these metadata are 
considered in content models or standards such as 
IEEE’s LOM or ADL’s SCORM.   

However, the thread which binds metadata, 
context and content models is ontology. Ontology 
adds semantics by defining associations among 
concepts or topics and corresponding attributes, 
creating structural dependencies. Structural 
dependencies provide a macro view of 
interconnections among learning objects and media, 
creating epistemological bases for different 
functional combinations of learning objects and its 
media components when the instructor authors 
learning content.   
 

2 Problem Formulation 
Educational systems should be viewed from three 
perspectives: first, system design driven by 
pedagogical principles, second technological tools 
that enable personalization and third, 
standardization in terms of indexing of learning 
objects and content management in order to enable 
interoperability and reusability of learning materials 
[2]. This paper addresses the third aspect, i.e., 
interoperability. 

Three problems constrain efforts to interoperate 
among ontologies. First, different creators use 
different ontologies to annotate metadata and 
learning object content [3].  

Second, the process of ontology mapping and 
merging between ontologies is time consuming and 
tedious.  Several ontology merging tools have been 
developed to support the ontology merging task     
[4, 5].  

PROMPT [4] is a semi-automatic tool for 
system-guided ontology merging in Protégé 2000. 
PROMPT identifies matching class names and 
iteratively performs automatic updates. PROMPT 
also identifies conflicts and makes suggestions on 
means to remove these conflicts to the user. 

FCA-Merge [5] is a bottom-up ontology 
merging approach using formal concept analysis 
and natural language processing techniques. Given 
source ontologies, it extracts instances from a given 



set of domain-specific text documents by applying 
natural language processing techniques. The 
concept lattice, a structural result of FCA-Merge, is 
derived from the extracted instances using formal 
concept analysis. The produced result is analyzed 
and merged with the existing ontology by the 
ontology engineer.  

ODEMerge [6] is integrated with WebODE. 
ODEMerge performs automated supervised merging 
of concepts, attributes and relationships from two 
different ontologies using synonym and hypernym 
tables to generate the merged ontology. It merges 
ontologies with the help of corresponding 
information from the user. The results derived from 
the ODEMerge process can be modified by the user. 

The approaches in [4] and [5] merge ontologies 
based on syntactic and semantic matching heuristics, 
and user interaction on the ontology merging 
process is requested to generate the merged 
ontology. We would like to fully automate the 
ontology merging process crucial for large 
repositories where the growth of learning objects 
can be exponential.  

Third, although in [6], the merging process is 
automated, supervised techniques which require 
prior knowledge are used. Prior knowledge is 
sometimes not easily available. 
 
 
3 Problem Solution 
This paper presents the OntoShare, an ontology 
sharing architecture that automatically merges 
ontologies through a hybrid unsupervised clustering 
method comprising of, Formal Concept Analysis 
(FCA), Self-Organizing Map (SOM) and K-Means 
clustering incorporated with linguistic processing 
using WordNet.  
 Most automated or semi-automated mapping 
and merging systems are concept-based (top-down) 
or instance-based (bottom-up).  Concept-based 
approaches predefine concept information such as 
name, taxonomies, constraints and relations and 
properties of concept elements.  In contrast, 
instance-based approaches build up the structural 
hierarchy based on instances of concepts and 
instances of relations. Examples of concept-based 
systems are PROMPT and ODEMerge whereas an 
example of the latter system is FCA-Merge. The 
OntoShare combines the concept-based and 
instance-based approaches. It is concept-based at 
the ontological contextualization and pre-linguistic 
processing stage and instance-based at the 
contextual processing stage (if multi-valued 

attributes are used). This paper discusses only the 
concept-based aspect. 

Formal Concept Analysis (FCA) provides the 
ontological basis for structuring associations among 
concepts/topics and modeling concepts/topics and 
corresponding attributes. Unsupervised Self-
Organizing Map (SOM) and k-means do not require 
prior knowledge.  As such, clustering results are 
natural. Furthermore, multi-level clustering can be 
implemented with these clustering techniques to 
improve on scalability and granularity [7]. 
Visualization of the merged ontology using the 
OntoVis visualization tool [8] enables indexing and 
easy retrieval of concepts and learning objects 
through attributes that describe each concept in 
FCA’s formal context. 

The rest of the paper is outlined as follows: 
Section 4 explains the OntoShare techniques, and 
Section 5 the OntoShare architecture. An example 
of a simulation result to illustrate the approach is 
provided in Section 6. Section 7 concludes the paper. 
 
 
4   OntoShare’s Techniques 
 
4.1   Ontologies 
Ontology specifies a shared conceptualization [9]. 
In general, ontology consists of concepts, attributes 
and relations. The core of the ontology is formalized 
as a tuple O: = (C, SC, R, SR, is_a, A), where C is 
Concepts of ontology and SC corresponds to the 
hierarchy of Concepts. The relationship between the 
concepts is defined by Relations, R where SR 

corresponds to the hierarchy of Relations. is_a is the 
hierarchical relationship between the concepts and A 
is axioms used to infer knowledge from existing 
knowledge. 
 
4.2   WordNet and Similarity Measure 
WordNet is the online lexical database, where each 
meaning of a word is represented by a synset or 
synonym set. WordNet organizes nouns and verbs 
into hierarchies of is-a relations [10].  

Stop word filtering and tokenization are applied 
to transform the input for similarity measure [11]. In 
tokenization, the compound words are split into 
tokens and semantic similarity with other words will 
be calculated as an average over the similarity 
between each token and the other word.  

The Leacock-Chodorow similarity measure [12] 
is used to discover the semantic similarity between 
two synsets as [13] have proven that it is the best 
among similarity measures. The similarity of two 
synsets can be defined as: 
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The Leacock-Chodorow similarity measure relies 
on the shortest paths between two synsets 
(ShortestLength (c1, c2)) in an is_a hierarchy and 
this value is scaled by depth D of the taxonomy. A  
threshold value is set to determine acceptable 
semantic similarity between two synsets.  
 
4.3   Formal Concept Analysis 
Formal Concept Analysis (FCA) [14] is an 
unsupervised learning technique and also a 
conceptual clustering tool used for discovering 
conceptual structures of data.  

A formal context is a triple k = (G, M, I) where 
G are objects, M are attributes and I is a binary 
relation between G and M, where I ⊆ G x M. 

For a set of objects A ⊆ G, we define A’ := {m 
∈ M | (g, m) ∈ I for ∀ g ∈ A} and for a set of 
attributes B ⊆ M, we define B’ := {g ∈ G | (g, m) ∈ 
I for ∀ m ∈ B}. 

A formal concept, a pair (A, B) is a formal 
context k if and only if A ⊆ G, B ⊆ M, A’ = B and 
B’ = A, where A is the extent and B is the intent of 
the concept (A, B). The subconcept - superconcept 
relation of the concepts of k is defined by (A1, B1) 
≤ (A2, B2):⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1). The set of 
all formal concepts k is called concept lattice and is 
denoted by βk.  
 
4.4   Self-Organizing Map 
An unsupervised neural network clustering tool, the 
self-organizing map (SOM) [15] is used to 
compress complex and high-dimensional data to 
lower-dimensional data (2-dimensional grid) 
according to similarity. More similar data are 
grouped together in the same cluster. 

The SOM is trained recursively until it 
converges to a stable state. For each input vector x, 
it is compared with the entire model vectors, where 
the distance between the model vectors and input 
vector x is computed. The nearest model vector to 
the input vector x is the best-matching unit (BMU) 
on the map, which is denoted as 
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Consequently, the model vectors are updated.  
 
4.5   K-Means Clustering 
A simple unsupervised clustering technique, k-
means clustering [15] divides a data set to a number 
of clusters. It is defined as 
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where C is the number of clusters, x is a data point, 
and ck is the centroid of the data points k.  

To compute the optimal number of clusters C 
for the data set, the Davies-Bouldin validity index 
[16] is used to validate each of it. The optimal k is 
derived from, 
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where C is the number of clusters, Sc is the average 
distance of all data points from the cluster to their 
centroid and dce(Qk, Ql) is distance between 
centroids.  
 
 
5   The OntoShare Architecture 
The prototypical implementation of the automated 
mapping and merging framework as illustrated in 
Fig. 1 as explained in this section.  
 

 
 

Fig. 1. OntoShare framework for ontology  
mapping and merging 

 



Oi represents the internal ontology of local 
learning object repository and Oe the external 
ontology of non-local learning object repository. 
The overall process for mapping and merging 
ontology is outlined from steps 1 to 4. 

Step 1: Ontological contextualization – Oi and 
Oe are contextualized using FCA with respect to the 
formal context for each ontology, Ki and Ke. Given 
an ontology O: = (C, SC, R, SR, is_a, A), the 
ontological concepts C is denoted as G (objects) and 
the rest of the ontology elements, SC, R, SR, is_a and 
A are denoted as M (attributes). The binary relation I 
⊆ G x M of the formal context denotes the ontology 
elements, SC, R, SR, is_a, and A corresponds to the 
ontological concepts C.  

Step 2: Pre-linguistic processing – WordNet 
based on Leacock-Chodorow measure is applied to 
discover the semantics between both formal 
contexts’ intents, Ki and Ke to standardize the intents 
of the formal contexts. Stop words filtering and 
tokenization are applied to transform the input for 
semantic similarity measurement between intents. 
This is followed by standardization of the 
ontological attributes whereby the attributes or 
intents are rearranged in order. Duplicated intents in 
each formal context are pruned. The standardized 
formal contexts sKi and sKe are computed as inputs 
for the next step. 

Step 3: Contextual clustering – Initially, the 
standardized formal context, sKi of the internal 
ontology Oi is presented to SOM to discover the 
intrinsic relationship between ontological concepts. 
Subsequently, k-means clustering is applied on the 
trained SOM to reduce the problem size of the SOM 
cluster to the most optimal number of k clusters 
based on the Davies-Bouldin validity index. Finally, 
the standardized formal context, sKe of the external 
ontology Oe is clustered by SOM's BMU into its 
appropriate cluster without need for prior 
knowledge of internal ontological concepts. The 
outcome is a compound of both standardized formal 
contexts, FCA_compound.  

Step 4: Post-linguistic processing – Semantic 
similarity measure using WordNet based on the 
Leacock-Chodorow measure is applied to discover 
the semantics between the extents in 
FCA_compound. Stop words filtering and 
tokenization is firstly used to transform the extents 
of the formal context into suitable representation for 
semantic similarity measure. The duplicated extents 
in the formal context are automatically pruned by 
maintaining the internal ontological concepts and 
structure. The binary relations I ⊆ G x M of 
duplicated extents are merged and the inheritance of 
superconcept-subconcept relations are updated. 

Lastly, the merged ontology is computed from 
the context.  

 
 

6   Simulation Results 
For simulation purposes, the ontological concept 
publication from the two ontologies to be merged is 
illustrated in Fig. 2 (internal ontology) [17] and Fig. 
3 (external ontology) [18]. The ontologies are 
visualized as concept lattices using the FCA tool, 
ConExp [19]. The internal ontology consists of 12 
ontological concepts with 14 ontological properties.  
Meanwhile the external ontology consists of 12 
ontological concepts with 30 ontological properties. 

 

 
 

Fig. 2. Internal ontology  
 

 
 

Fig. 3. External ontology  
 

Initially, at the ontological contextualization 
phase, the ontologies, Oi and Oe are conceptualized 
using FCA into Ki and Ke. Pre-linguistic processing 
using WordNet based on Leacock-Chodorow 
measure at threshold is used to standardize the 
intents of the contexts.  

At the contextual clustering stage, the 
standardized formal context, sKe of the internal 
ontology, Oi is fed into SOM and k-means. The 
optimal number of clusters k is 3 as validated by the 
Davies-Bouldin validity index with db-index, 
0.8238 and the sum of squares error, 2.3230. The 
clustered ontological concepts for the internal 
ontology are depicted in Fig. 4.  

Subsequently, the standardized formal context, 
sKe of the external ontology, Oe is fed into the 
trained SOM to discover semantics between internal 
ontological concepts and external ontological 
concepts and new ontological concepts. The 
ontological concepts are clustered into the most 
similar cluster by SOM’s BMU as illustrated in Fig. 
5. The external ontological concepts are clustered in 



cluster 1 and 2 as boxed in Fig. 5.  Most of the new 
concepts are clustered in cluster 2. FCA compound 
is constructed from clusters 1 and 2. 

 
 

 
Fig. 4. Clusters of internal ontology 

 
 

 
Fig. 5. Clusters of external ontological concepts 

 

Post-linguistic processing is applied to prune 
the duplicated ontological concepts in the 
FCA_Compound. There are four duplicated 
ontological concepts: Article, Book, Publication and 
TechReport. SOM discovered eight new ontological 
concepts -- InBook, InCollection, InProdeedings, 
MastersThesis, Misc, PhdThesis, Proceedings and 
Resource. For the new ontological concepts, they 
will be dynamically updated into the internal 
ontology with their ontological properties. The is-a 
relationship and superconcept-subconcept 
relationship between the concepts are updated, 
whereas the subconcepts will inherit new 
ontological properties from the superconcepts. The 
merged ontology is illustrated in Fig. 6.  

It is noted that obtaining a suitable threshold 
value requires multiple trials. Future work will 
involve the use of the Takagi-Sugeno fuzzy model 
[20] to model the dynamic linguistic on-line 
processing based on the ontology engineer’s defined 
rules to function as a validity index for similarity 
measurement in WordNet.  

 
 

7   Conclusion 
We have proposed the OntoShare architecture for 
automated ontology mapping and merging and for 
dynamic update of the new ontological concepts to 
enable interoperability between ontologies for 
learning object reuse and sharing. The advantage of 
using unsupervised clustering techniques has been 
shown to increase robustness in the ontology 
mapping and merging process. Furthermore, prior 
knowledge is not required. Results can be extended 
to ontology mapping for resources in databases and 
data warehouses. 
 

 
 

Fig.6. Merged Ontology 
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