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Abstract: - This paper presents a hardware/software partitioning flow for improving performance in systems-
on-chip comprised by processor and Field Programmable Gate Array. Speedups are achieved by executing 
critical software parts on the reconfigurable FPGA logic. A generic hybrid system architecture is considered by 
the methodology. The partitioning flow uses an automated analysis process at the basic-block level for 
detecting critical application parts. Two different instances of the generic platform and five real-world 
applications are used in the experiments. The analytical experimentation illustrates that the speedup of the 
applications ranges from 1.3 to 3.7 relative to an all software solution.  
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1 Introduction 
In past few years, academic [1], [2] and commercial 
[3], [4], [5], [6] single-chip platforms emerged that 
employ processor(s) with Field Programmable Gate 
Array (FPGA) logic. These System-on-Chip (SoC) 
platforms are mainly composed by 8-bit 
microcontrollers, as in the ATMEL’s Field 
Programmable System-Level Integrated Circuit 
(FPSLIC) [5], in Triscend’s E5 device [6] and 32-bit 
processors as in the Altera’s Excalibur [4], in 
Xilinx’s Virtex-II Pro [3], Triscend’s A7 and in 
Garp architecture [1]. A significant advantage of 
using FPGA logic is that the functionality of custom 
made coprocessors or peripherals implemented in 
this logic, can be changed due to the reconfiguration 
capabilities of such devices. This is not the case in 
the implementation in Application Specific 
Integrated Circuits (ASIC), where a small change in 
an application or in a standard requires the re-design 
of the ASIC component. Additionally, significantly 
less time is spent in implementing a design in FPGA 
technology than in ASIC one. The microprocessor-
FPGA SoCs are expected to become more 
widespread in the future due to emergence of 
standards, like telecom ones, that their specification 
changes over time to meet the contemporary 
demands. For example, this is already the case in the 
Wireless LAN standards IEEE 802.11x. 

It is important to efficiently utilize the 
reconfigurable logic in microprocessor-FPGA SoCs. 
A hardware/software partitioning methodology that 
divides the application into software running on the 

microprocessor and on the FPGA logic is essential 
for such systems. Partitioning can improve 
performance [7], [8] and in some cases even reduce 
power consumption [9]. More recently, 
hardware/software partitioning techniques for SoCs 
composed by a microprocessor and FPGA [10], 
[11], [12], [13], were developed. The FPGA unit is 
treated as an extension of the microprocessor. 
Critical parts of the application, called kernels, are 
moved for execution on the FPGA for improved 
performance and usually reduced energy 
consumption. This design choice stems from the 
observation that most embedded DSP and 
multimedia applications spend the majority of their 
execution time in few small code segments (usually 
loops), the kernels. This means that an extensive 
solution space search, as in past 
hardware/partitioning works [7], [8], [9], is not a 
requisite. 

In this work, we propose a hardware/software 
partitioning flow for accelerating software kernels 
of an embedded application on the reconfigurable 
logic of a generic processor-FPGA SoC. The 
processor executes the non-critical part of the 
application’s software. This type of partitioning is 
possible in embedded systems, where the 
application is usually invariant during the lifetime of 
the system or of the specification. The considered 
processor-FPGA architecture can model a variety of 
existing systems, like the ones considered in [3], [4], 
[5], [6]. Furthermore, the proposed flow considers 
the communication time for exchanging data values 



between the FPGA and the processor, which was 
not the case in past works for partitioning in 
processor-FPGA systems [11], [12], [13]. 

An analysis tool at the basic block (BB) level has 
been developed. The term basic block expresses a 
sequence of instructions (operations) with no 
branches into or out of the middle. At the end of 
each basic block there is a branch instruction that 
controls which basic block executes next. The basic 
block is actually a Data Flow Graph (DFG). This 
tool identifies kernels in the input software and 
targets RISC processor based SoCs, which is the 
typical case in both academia and in industry [1]-
[6].  

For evaluating the hardware/software 
partitioning methodology, we have used two 
different instances of the considered processor-
FPGA platform: (i) four embedded 32-bit processors 
coupled with two devices from the Xilinx’s Virtex 
FPGA family, and (ii) an 32-bit processor with two 
devices from the Altera’s APEX FPGAs [4]. The 
(ii) platform instance corresponds to the processor 
and the FPGA units used in the Altera’s Excalibur 
family [4].  

We have used five real-life applications, coded in 
C language, in the experiments: an IEEE 802.11a 
Orthogonal Frequency Division Multiplexing 
(OFDM) transmitter, a video compression 
technique, a medical imaging application, a wavelet-
based image compressor [14] and a JPEG compliant 
image encoder. The analytical performed 
experiments show that the kernels in the five real-
world applications contribute an average of 69% of 
the total dynamic instruction count, while their size 
is 11% on average of the total code size. For the 
Virtex-based platform the speedups of the five 
applications range from 1.3 to 3.7, while for the 
Excalibur-simulated SoC the speedups are from 1.3 
to 3.2 relative to the all-software solution.  
  The rest of the paper is organized as follows: 
section 2 describes the hardware/software 
partitioning methodology. Section 3 presents the 
analytical experiments for the two different 
platforms. Finally, section 4 concludes this paper 
and describes future activities. 
 
 
2 Hardware/software partitioning flow  

2.1 Hybrid system architecture 
A generic view of the considered hybrid SoC 
architecture is shown in Fig. 1. The platform 
includes: (a) an FPGA for executing kernels, (b) 
shared system data memory, and (c) an embedded 

microprocessor. The microprocessor is typically a 
RISC processor, like an ARM7 [15]. 
Communication between the FPGA and the 
microprocessor takes place via the system’s shared 
data memory. Direct communication is also present 
between the FPGA and the processor. Part of the 
direct signals is used by the processor for 
controlling the FPGA by writing values to 
configuration registers located in the FPGA. The 
rest direct signals are used by the FPGA for 
informing the processor. For example, an interrupt 
signal is typically present which notifies the 
processor that the execution of a critical software 
part on the FPGA has finished. Local data memories 
exist in the FPGA for quickly loading data, as in 
modern FPGAs [3], [4], [5]. This generic system 
architecture can model the majority of the 
contemporary processor-FPGA systems, like the 
ones considered in [3], [4], [5], [6]. 
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Fig. 1. Target hybrid SoC. 

 
 

2.2 Flow description 
The proposed hardware/software partitioning flow 
for processor-FPGA systems interests in increasing 
application’s performance by mapping critical 
software parts on the reconfigurable hardware. The 
flow of the methodology is shown in Fig. 2. The 
input is a software description of the application in a 
high-level language, like C/C++. Firstly, the Control 
Data Flow Graph (CDFG) Intermediate 
Representation (IR) is created from the input source 
code. The CDFG is the input to the analysis step. In 
the kernel detection, an ordering of the basic blocks 
in terms of the computational complexity is 
performed. The basic block’s complexity is 
represented by the instruction count, which is the 
number of instructions executed in running the 
application on the microprocessor. The dynamic 
instruction count has been used as a measure of 
identifying critical loop structures in previous work 
[12]. However, in this work the computational 
complexity is defined at a smaller granularity, at the 
basic block level. The instruction count is found by 
a combination of dynamic (profiling) and static 
analysis. A threshold, set by the designer, is used to 



characterize specific basic blocks as kernels. The 
rest of the basic blocks are going to be executed on 
the processor. 
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Fig. 2. Hardware/software partitioning flow. 

The kernels are synthesized on the FPGA 
architecture for acceleration. The non-critical 
application’s parts are converted from the CDFG IR 
back to the source code representation.  Then, the 
source code is compiled using a compiler for the 
specific processor and it is executed on the 
microprocessor. The separation of the application’s 
part to the critical and non-critical parts, defines the 
data communication requirements between the 
processor and the FPGA. The proposed design flow 
considers the data exchange time through the shared 
memory for calculating the application’s execution 
time, which is not the case in previous works for 
single-chip processor-FPGA systems [11]-[13].  

Currently, we consider the case where the 
processor and the FPGA execute in mutual 
exclusion. The kernels are replaced in the software 
description with calls to FPGA. When a call to 
FPGA is reached in the software, the processor 
activates the FPGA and the proper state of the Finite 
State Machine (FSM) is enabled on the FPGA for 
executing the kernel. The data required for the 
kernel execution are written to the shared data 
memory by the processor. Then, these data are read 
by the FPGA. After the completion of the kernel 
execution, the FPGA informs the processor by 
typically using a direct interrupt signal and writes 
the data required for executing the remaining 
software. Then, the execution of the software is 
continued on the processor and the FPGA remains 
idle. Since the partitioning flow interests in 
accelerating a sequential software program, which is 
often the case in implementing embedded 
applications in a high-level language like C, the 
speedups from the parallel execution of the FPGA 
and the processor could be likely small. We mention 
that works in single-chip processor-FPGA systems 
[10], [11], [12], [13] also assumed a mutual 
exclusive operation.  

With the mutual exclusive operation of the 
processor and the FPGA, the total number of 
execution cycles after hardware/software 
partitioning is:  
Cycleshw/sw = Cyclessw + CyclesFPGA                         (1) 
where Cyclessw represents the number of cycles 
needed for executing non-critical parts on the 
processor, CyclesFPGA corresponds to the cycles that 
are required for executing the kernels on the FPGA. 
The communication time between the processor and 
the FPGA is included in the Cyclessw and in the 
CyclesFPGA since load and store operations that refer 
to the shared memory are present in the non-critical 
parts and in the kernels of each application. The 
Cycleshw/sw are multiplied with the clock period of 
the processor for calculating the total execution time 
thw/sw after the partitioning.  

For estimating the CyclesFPGA of the application’s 
kernels on the FPGA, we consider the following 
procedure. We describe each kernel in a 
synthesizable Register-Transfer Level (RTL) 
description using VHDL language. Loop unrolling 
and pipelining transformations are used for 
achieving better speedup when each kernel is 
synthesized on the FPGA. Each kernel is a state of 
an FSM (controller), so that when the kernels are 
synthesized they could share the same hardware. 
This sharing is achievable because the kernels are 
not executed concurrently since they are belonging 
to a sequential software description. For executing a 
specific kernel on the FPGA, the proper state of the 
controller is selected. The reconfigurable logic runs 
at the maximum possible clock frequency after 
synthesizing all the kernels of an application. For 
synthesis, placing and routing of the RTL 
descriptions of the kernels, standard commercial 
tools can be used. In this work, we have utilized the 
Synplify Pro (ver. 7.3.1) of the Synplicity Inc. [16].           

Parts of the hardware/software partitioning 
methodology have been automated for a software 
description in C language. In particular, for the 
CDFG creation from the C code, we have used the 
SUIF2 [17] and MachineSUIF compiler 
infrastructures [18]. The automation of the analysis 
step is described in sub-section 2.3. For the 
translation from the CDFG format to the C source 
code, the m2c compiler pass from the Machine-
SUIF distribution is used.   

 
 

2.3 Analysis 
The analysis step of the partitioning methodology 
outputs the kernel and non-critical parts of the input 
software description. The inherent computational 
complexity of basic blocks, represented by the 



dynamic instruction count, is a rational measure to 
detect dominant kernels. The number of instructions 
executed when an application runs on the 
microprocessor is obtained by a combination of 
dynamic and static analysis within basic blocks. Fig. 
3 shows the diagram of the analysis.  
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Fig. 3. Analysis procedure. 

The input to the analysis process is the CDFG IR 
of the source code. For the CDFG representation, 
we have chosen the SUIFvm representation for the 
instruction opcodes inside basic blocks [18]. The 
SUIFvm instruction set assumes a generic RISC 
machine, not biased to any existing architecture. 
Thus, the information obtained from the analysis, 
could stand for any RISC processor architecture. 
This means that the detected critical basic blocks are 
kernels for various types of RISC processors. The 
aforementioned statement was justified by 
experimentation, using the profiling utilities of the 
compilation tools of the processors considered in the 
experiments. In fact, the order of the instruction 
counts of the basic blocks is retained in the RISC 
processors used in our experiments.  

We have used the HALT library of the Machine-
SUIF distribution [18] for performing dynamic 
analysis at the basic block level. The dynamic 
analysis step reports the execution frequency of the 
basic blocks. For the static analysis, a MachineSUIF 
pass has been developed that identifies the type of 
instructions inside each basic block. Afterwards, a 
custom developed compiler pass calculates the static 
size of the basic block using the SUIFvm opcodes. 
The static size and the execution frequency of the 
basic blocks are inputs to a developed instruction 
mix pass that outputs the dynamic instruction count. 
After the instruction count calculation for each basic 
block, an ordering of the basic blocks is performed. 
We consider kernels, the basic blocks which have an 
instruction count over a user-defined threshold. This 
threshold represents the percentage of the 
contribution of the basic block’s instruction count in 

the application’s overall instruction count. For 
example, basic blocks contributing more than 10% 
to the total instruction count can be considered as 
kernels.  
 
 
3 Results 
 

3.1 Experimental set-up 
Five DSP applications were used for the 
experimentation with the two systems composed by 
32-bit RISC processors. The applications are: (a) a 
medical image processing application called cavity 
detector, (b) an IEEE 802.11a OFDM transmitter, 
(c) a wavelet-based image compressor [14], (d) a 
still-image JPEG encoder, and (e) a video 
compression technique, called Quadtree Structured 
Difference Pulse Code Modulation (QSDPCM). The 
experiments are performed with the following 
inputs: (a) an image of size 640x400 bytes for the 
cavity detector, (b) 4 payload symbols for the 
OFDM transmitter at a 54 Mbps rate, (c) an image 
of size 512x512 bytes for the wavelet-based image 
compressor, (d) an image of size 256x256 bytes for 
the JPEG encoder, and (e) two video frames of size 
176x144 bytes each for the QSDPCM.  
 
 
3.2 Analysis results 
The results using the developed analysis flow are 
shown in Table 1. The contributions of the kernels 
to the total static size (in instruction bytes) and to 
the total instructions are reported. The threshold for 
the kernel detection was set to the 10% of the total 
dynamic instructions of the application. The number 
of kernels detected in each application is also given. 
The kernels of the five applications are loop bodies 
without conditional statements inside them.  

Table 1. Results from the analysis procedure. 
App. Total 

Size 
Kernels 

size 
% 

size 
% total 

instructions 
# of 

kernels 
Cavity 12,039 910 7.6 79.8 4 
OFDM 15,579 1,440 9.2 61.5 4 
Compressor 12,835 602 4.7 78.8 4 
JPEG 10,995 2,534 23.0 71.3 4 
QSDPCM 24,767 2,477 10.0 51.0 3 
Average   10.9 68.5  

 
From the analysis results, it is inferred that an 
average of 10.9% of the code size, representing the 
kernels’ size, contributes 68.5% on average to the 
total executed instructions. Thus, the speedup of an 
application will come from accelerating a small 
number of kernels. The results of Table 1 imply that 



the usage of exploration algorithms, which typically 
examine thousands of possible partitions and utilize 
complex algorithms [7], [8], [9], is not necessary in 
the case of partitioning the considered applications 
on the processor-FPGA system.  
 
 
3.3 Virtex-based systems 
The results from partitioning the five applications in 
a SoC that has a Virtex FPGA device [3] as its 
reconfigurable logic are given in this section. These 
results correspond to the speedups after executing 
the kernels on the FPGA. 

We have used four different types of 32-bit 
embedded RISC processors: an ARM7, an ARM9 
[15], and two SimpleScalar processors [19]. The 
SimpleScalar processor is an extension of the 
MIPS32 IV core [20]. These processors are widely 
used in embedded SoCs. The first type of the MIPS 
processor (MIPSa) uses one integer ALU unit, while 
the second one (MIPSb) has two integer ALU units. 
We have used instruction-set simulators for the 
considered embedded processors for estimating the 
number of execution cycles. More specifically, for 
the ARM processors, the ARM Developer Suite 
(version 1.2) [15] was utilized, while the 
performance for the MIPS-based processors is 
estimated using the SimpleScalar simulator tool 
[19]. Typical clock frequencies are considered for 
the four processors: the ARM7 runs at 100 MHz, the 
ARM9 at 250 MHz, and the MIPS processors at 200 
MHz. These clock frequencies were taken from 
reference designs from the ARM and MIPS 
websites. The five applications were optimized for 
best performance when compiled for the considered 
processors.  

The performance gains from applying the 
partitioning flow in the five applications are 
presented in Fig. 4. For each application, the four 
aforementioned processor architectures co-exist 
with the FPGA in the hybrid SoC. We have assumed 
two different Virtex FPGA devices: (a) the smallest 
available Virtex device, the XCV50 FPGA, and (b) 
the medium size device XCV400. The clock 
frequencies after synthesizing, placing and routing 
the designs using the Synplify Pro toolset [16], 
range from 45 to 77 MHz for the XCV50 device and 
from 37 to 77 MHz for the XCV400. From the 
speedups shown in Fig. 4, it is evident that 
significant performance improvements are achieved 
when critical software parts are mapped on the 
FPGA. It is noticed that better performance gains 
are achieved for the ARM7 case than the ARM9-
FPGA SoC. This occurs since the speedup of 
kernels in the FPGA has greater effect when the 

FPGA co-exists with a lower-performance 
processor, as it is the ARM7 relative to the ARM9. 
Furthermore, the speedup is almost always greater 
for the MIPSa than the MIPSb processor, since the 
latter one employs one more integer ALU unit.  
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Fig. 4. Speedups from accelerating kernels on  
(a) XCV50 and (b) XCV400 devices. 

For the case of the different Virtex devices, the 
performance improvements are greater for the 
XCV400 due to the larger number of Control Logic 
Blocks (CLBs) which permit the implementation of 
more operations on the FPGA hardware. This leads 
to better kernels’ acceleration through the larger 
amount of spatial computation due to the increased 
number of instantiated operations in the 
reconfigurable logic relative to the smaller FPGA 
device, the XCV50. The average speedup for the 
five applications is 2.1 for the XCV50 and 2.4 for 
the XCV400.  

 
 

3.4 Excalibur-simulated systems 
The results from accelerating the kernels of the five 
applications on the Excalibur-simulated system [4] 
are given in this section. In the Excalibur devices, 
an ARM9 processor is used that it is clocked at 
200MHz, which is the also case in these 
experiments. The applications were again optimized 
for best performance when compiled for the ARM9. 
The ARM Developer Suite was used for estimating 
the cycles required for the software execution. Two 



cases of APEX FPGAs are utilized for simulating 
the EPXA1 and the EPXA10 Excalibur devices, 
where the EPXA10 stands for a larger amount of 
reconfigurable logic. After the kernels’ synthesis 
with the Synplify Pro, the reported clock 
frequencies range from 20 to 38 MHz for the 
EPXA1, and from 22 to 30 MHz for the EPXA10.  
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Fig. 5. Speedups for the Excalibur-simulated 

systems. 

The speedups after partitioning are given in Fig. 
5. Greater improvements are achieved for the 
EPXA10-simulated system, as in the case of the 
Virtex-based SoCs, where greater performance was 
achieved for the larger Virtex device. The average 
speedup is 2.1 for the EPXA1 and 2.3 for the 
EPXA10. Comparing the speedups of Fig. 5 with 
the respective ones for the ARM9-Virtex system, 
they are approximately the same although the 
ARM9 is clocked at a lower speed and the clock 
frequencies after the kernel synthesis on the APEX 
devices, are smaller than the ones on the Virtex 
FPGAs.          

 
 

4  Conclusions 
A partitioning flow for speeding-up critical software 
parts in processor-FPGA systems was presented. 
Five DSP applications were executed on two 
instances of a generic processor-FPGA platform. 
Important performance improvements, which range 
from 1.3 to 3.7, have been achieved.  
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