
A Partitioning Flow for Accelerating Applications in
Processor-FPGA Systems

MICHALIS D. GALANIS1, GREGORY DIMITROULAKOS2, COSTAS E. GOUTIS3

VLSI Design Laboratory, Electrical & Computer Engineering Department
University of Patras, Rio Campus, GREECE

Abstract: - This paper presents a hardware/software partitioning flow for improving performance in systems-
on-chip comprised by processor and Field Programmable Gate Array. Speedups are achieved by executing
critical software parts on the reconfigurable FPGA logic. A generic hybrid system architecture is considered by
the methodology. The partitioning flow uses an automated analysis process at the basic-block level for
detecting critical application parts. Two different instances of the generic platform and five real-world
applications are used in the experiments. The analytical experimentation illustrates that the speedup of the
applications ranges from 1.3 to 3.7 relative to an all software solution.

Key-Words: - Performance improvement, Hardware/software partitioning, FPGA, Embedded systems,
Analysis.

1 Introduction
In past few years, academic [1], [2] and commercial
[3], [4], [5], [6] single-chip platforms emerged that
employ processor(s) with Field Programmable Gate
Array (FPGA) logic. These System-on-Chip (SoC)
platforms are mainly composed by 8-bit
microcontrollers, as in the ATMEL’s Field
Programmable System-Level Integrated Circuit
(FPSLIC) [5], in Triscend’s E5 device [6] and 32-bit
processors as in the Altera’s Excalibur [4], in
Xilinx’s Virtex-II Pro [3], Triscend’s A7 and in
Garp architecture [1]. A significant advantage of
using FPGA logic is that the functionality of custom
made coprocessors or peripherals implemented in
this logic, can be changed due to the reconfiguration
capabilities of such devices. This is not the case in
the implementation in Application Specific
Integrated Circuits (ASIC), where a small change in
an application or in a standard requires the re-design
of the ASIC component. Additionally, significantly
less time is spent in implementing a design in FPGA
technology than in ASIC one. The microprocessor-
FPGA SoCs are expected to become more
widespread in the future due to emergence of
standards, like telecom ones, that their specification
changes over time to meet the contemporary
demands. For example, this is already the case in the
Wireless LAN standards IEEE 802.11x.

It is important to efficiently utilize the
reconfigurable logic in microprocessor-FPGA SoCs.
A hardware/software partitioning methodology that
divides the application into software running on the

microprocessor and on the FPGA logic is essential
for such systems. Partitioning can improve
performance [7], [8] and in some cases even reduce
power consumption [9]. More recently,
hardware/software partitioning techniques for SoCs
composed by a microprocessor and FPGA [10],
[11], [12], [13], were developed. The FPGA unit is
treated as an extension of the microprocessor.
Critical parts of the application, called kernels, are
moved for execution on the FPGA for improved
performance and usually reduced energy
consumption. This design choice stems from the
observation that most embedded DSP and
multimedia applications spend the majority of their
execution time in few small code segments (usually
loops), the kernels. This means that an extensive
solution space search, as in past
hardware/partitioning works [7], [8], [9], is not a
requisite.

In this work, we propose a hardware/software
partitioning flow for accelerating software kernels
of an embedded application on the reconfigurable
logic of a generic processor-FPGA SoC. The
processor executes the non-critical part of the
application’s software. This type of partitioning is
possible in embedded systems, where the
application is usually invariant during the lifetime of
the system or of the specification. The considered
processor-FPGA architecture can model a variety of
existing systems, like the ones considered in [3], [4],
[5], [6]. Furthermore, the proposed flow considers
the communication time for exchanging data values

between the FPGA and the processor, which was
not the case in past works for partitioning in
processor-FPGA systems [11], [12], [13].

An analysis tool at the basic block (BB) level has
been developed. The term basic block expresses a
sequence of instructions (operations) with no
branches into or out of the middle. At the end of
each basic block there is a branch instruction that
controls which basic block executes next. The basic
block is actually a Data Flow Graph (DFG). This
tool identifies kernels in the input software and
targets RISC processor based SoCs, which is the
typical case in both academia and in industry [1]-
[6].

For evaluating the hardware/software
partitioning methodology, we have used two
different instances of the considered processor-
FPGA platform: (i) four embedded 32-bit processors
coupled with two devices from the Xilinx’s Virtex
FPGA family, and (ii) an 32-bit processor with two
devices from the Altera’s APEX FPGAs [4]. The
(ii) platform instance corresponds to the processor
and the FPGA units used in the Altera’s Excalibur
family [4].

We have used five real-life applications, coded in
C language, in the experiments: an IEEE 802.11a
Orthogonal Frequency Division Multiplexing
(OFDM) transmitter, a video compression
technique, a medical imaging application, a wavelet-
based image compressor [14] and a JPEG compliant
image encoder. The analytical performed
experiments show that the kernels in the five real-
world applications contribute an average of 69% of
the total dynamic instruction count, while their size
is 11% on average of the total code size. For the
Virtex-based platform the speedups of the five
applications range from 1.3 to 3.7, while for the
Excalibur-simulated SoC the speedups are from 1.3
to 3.2 relative to the all-software solution.
 The rest of the paper is organized as follows:
section 2 describes the hardware/software
partitioning methodology. Section 3 presents the
analytical experiments for the two different
platforms. Finally, section 4 concludes this paper
and describes future activities.

2 Hardware/software partitioning flow

2.1 Hybrid system architecture
A generic view of the considered hybrid SoC
architecture is shown in Fig. 1. The platform
includes: (a) an FPGA for executing kernels, (b)
shared system data memory, and (c) an embedded

microprocessor. The microprocessor is typically a
RISC processor, like an ARM7 [15].
Communication between the FPGA and the
microprocessor takes place via the system’s shared
data memory. Direct communication is also present
between the FPGA and the processor. Part of the
direct signals is used by the processor for
controlling the FPGA by writing values to
configuration registers located in the FPGA. The
rest direct signals are used by the FPGA for
informing the processor. For example, an interrupt
signal is typically present which notifies the
processor that the execution of a critical software
part on the FPGA has finished. Local data memories
exist in the FPGA for quickly loading data, as in
modern FPGAs [3], [4], [5]. This generic system
architecture can model the majority of the
contemporary processor-FPGA systems, like the
ones considered in [3], [4], [5], [6].

Processor

Shared Data Memory

Data

Data &
Control

FPGA

Fig. 1. Target hybrid SoC.

2.2 Flow description
The proposed hardware/software partitioning flow
for processor-FPGA systems interests in increasing
application’s performance by mapping critical
software parts on the reconfigurable hardware. The
flow of the methodology is shown in Fig. 2. The
input is a software description of the application in a
high-level language, like C/C++. Firstly, the Control
Data Flow Graph (CDFG) Intermediate
Representation (IR) is created from the input source
code. The CDFG is the input to the analysis step. In
the kernel detection, an ordering of the basic blocks
in terms of the computational complexity is
performed. The basic block’s complexity is
represented by the instruction count, which is the
number of instructions executed in running the
application on the microprocessor. The dynamic
instruction count has been used as a measure of
identifying critical loop structures in previous work
[12]. However, in this work the computational
complexity is defined at a smaller granularity, at the
basic block level. The instruction count is found by
a combination of dynamic (profiling) and static
analysis. A threshold, set by the designer, is used to

characterize specific basic blocks as kernels. The
rest of the basic blocks are going to be executed on
the processor.

Software

CDFG creation

Analysis

Mapping to FPGA

Compilation

Processor

CDFG

Non critical partsKernels

FPGA

Translating to
source code

Source code

Fig. 2. Hardware/software partitioning flow.

The kernels are synthesized on the FPGA
architecture for acceleration. The non-critical
application’s parts are converted from the CDFG IR
back to the source code representation. Then, the
source code is compiled using a compiler for the
specific processor and it is executed on the
microprocessor. The separation of the application’s
part to the critical and non-critical parts, defines the
data communication requirements between the
processor and the FPGA. The proposed design flow
considers the data exchange time through the shared
memory for calculating the application’s execution
time, which is not the case in previous works for
single-chip processor-FPGA systems [11]-[13].

Currently, we consider the case where the
processor and the FPGA execute in mutual
exclusion. The kernels are replaced in the software
description with calls to FPGA. When a call to
FPGA is reached in the software, the processor
activates the FPGA and the proper state of the Finite
State Machine (FSM) is enabled on the FPGA for
executing the kernel. The data required for the
kernel execution are written to the shared data
memory by the processor. Then, these data are read
by the FPGA. After the completion of the kernel
execution, the FPGA informs the processor by
typically using a direct interrupt signal and writes
the data required for executing the remaining
software. Then, the execution of the software is
continued on the processor and the FPGA remains
idle. Since the partitioning flow interests in
accelerating a sequential software program, which is
often the case in implementing embedded
applications in a high-level language like C, the
speedups from the parallel execution of the FPGA
and the processor could be likely small. We mention
that works in single-chip processor-FPGA systems
[10], [11], [12], [13] also assumed a mutual
exclusive operation.

With the mutual exclusive operation of the
processor and the FPGA, the total number of
execution cycles after hardware/software
partitioning is:
Cycleshw/sw = Cyclessw + CyclesFPGA (1)
where Cyclessw represents the number of cycles
needed for executing non-critical parts on the
processor, CyclesFPGA corresponds to the cycles that
are required for executing the kernels on the FPGA.
The communication time between the processor and
the FPGA is included in the Cyclessw and in the
CyclesFPGA since load and store operations that refer
to the shared memory are present in the non-critical
parts and in the kernels of each application. The
Cycleshw/sw are multiplied with the clock period of
the processor for calculating the total execution time
thw/sw after the partitioning.

For estimating the CyclesFPGA of the application’s
kernels on the FPGA, we consider the following
procedure. We describe each kernel in a
synthesizable Register-Transfer Level (RTL)
description using VHDL language. Loop unrolling
and pipelining transformations are used for
achieving better speedup when each kernel is
synthesized on the FPGA. Each kernel is a state of
an FSM (controller), so that when the kernels are
synthesized they could share the same hardware.
This sharing is achievable because the kernels are
not executed concurrently since they are belonging
to a sequential software description. For executing a
specific kernel on the FPGA, the proper state of the
controller is selected. The reconfigurable logic runs
at the maximum possible clock frequency after
synthesizing all the kernels of an application. For
synthesis, placing and routing of the RTL
descriptions of the kernels, standard commercial
tools can be used. In this work, we have utilized the
Synplify Pro (ver. 7.3.1) of the Synplicity Inc. [16].

Parts of the hardware/software partitioning
methodology have been automated for a software
description in C language. In particular, for the
CDFG creation from the C code, we have used the
SUIF2 [17] and MachineSUIF compiler
infrastructures [18]. The automation of the analysis
step is described in sub-section 2.3. For the
translation from the CDFG format to the C source
code, the m2c compiler pass from the Machine-
SUIF distribution is used.

2.3 Analysis
The analysis step of the partitioning methodology
outputs the kernel and non-critical parts of the input
software description. The inherent computational
complexity of basic blocks, represented by the

dynamic instruction count, is a rational measure to
detect dominant kernels. The number of instructions
executed when an application runs on the
microprocessor is obtained by a combination of
dynamic and static analysis within basic blocks. Fig.
3 shows the diagram of the analysis.

CDFG

Basic Block
Dynamic Analysis

Execution frequencies Static size of BBs

Instruction count

Application’s
input

BB ordering & selection

Non critical BBsKernels

Threshold

Instruction mix

Basic Block
Static Analysis

Fig. 3. Analysis procedure.

The input to the analysis process is the CDFG IR
of the source code. For the CDFG representation,
we have chosen the SUIFvm representation for the
instruction opcodes inside basic blocks [18]. The
SUIFvm instruction set assumes a generic RISC
machine, not biased to any existing architecture.
Thus, the information obtained from the analysis,
could stand for any RISC processor architecture.
This means that the detected critical basic blocks are
kernels for various types of RISC processors. The
aforementioned statement was justified by
experimentation, using the profiling utilities of the
compilation tools of the processors considered in the
experiments. In fact, the order of the instruction
counts of the basic blocks is retained in the RISC
processors used in our experiments.

We have used the HALT library of the Machine-
SUIF distribution [18] for performing dynamic
analysis at the basic block level. The dynamic
analysis step reports the execution frequency of the
basic blocks. For the static analysis, a MachineSUIF
pass has been developed that identifies the type of
instructions inside each basic block. Afterwards, a
custom developed compiler pass calculates the static
size of the basic block using the SUIFvm opcodes.
The static size and the execution frequency of the
basic blocks are inputs to a developed instruction
mix pass that outputs the dynamic instruction count.
After the instruction count calculation for each basic
block, an ordering of the basic blocks is performed.
We consider kernels, the basic blocks which have an
instruction count over a user-defined threshold. This
threshold represents the percentage of the
contribution of the basic block’s instruction count in

the application’s overall instruction count. For
example, basic blocks contributing more than 10%
to the total instruction count can be considered as
kernels.

3 Results

3.1 Experimental set-up
Five DSP applications were used for the
experimentation with the two systems composed by
32-bit RISC processors. The applications are: (a) a
medical image processing application called cavity
detector, (b) an IEEE 802.11a OFDM transmitter,
(c) a wavelet-based image compressor [14], (d) a
still-image JPEG encoder, and (e) a video
compression technique, called Quadtree Structured
Difference Pulse Code Modulation (QSDPCM). The
experiments are performed with the following
inputs: (a) an image of size 640x400 bytes for the
cavity detector, (b) 4 payload symbols for the
OFDM transmitter at a 54 Mbps rate, (c) an image
of size 512x512 bytes for the wavelet-based image
compressor, (d) an image of size 256x256 bytes for
the JPEG encoder, and (e) two video frames of size
176x144 bytes each for the QSDPCM.

3.2 Analysis results
The results using the developed analysis flow are
shown in Table 1. The contributions of the kernels
to the total static size (in instruction bytes) and to
the total instructions are reported. The threshold for
the kernel detection was set to the 10% of the total
dynamic instructions of the application. The number
of kernels detected in each application is also given.
The kernels of the five applications are loop bodies
without conditional statements inside them.

Table 1. Results from the analysis procedure.
App. Total

Size
Kernels

size
%

size
% total

instructions
of

kernels
Cavity 12,039 910 7.6 79.8 4
OFDM 15,579 1,440 9.2 61.5 4
Compressor 12,835 602 4.7 78.8 4
JPEG 10,995 2,534 23.0 71.3 4
QSDPCM 24,767 2,477 10.0 51.0 3
Average 10.9 68.5

From the analysis results, it is inferred that an
average of 10.9% of the code size, representing the
kernels’ size, contributes 68.5% on average to the
total executed instructions. Thus, the speedup of an
application will come from accelerating a small
number of kernels. The results of Table 1 imply that

the usage of exploration algorithms, which typically
examine thousands of possible partitions and utilize
complex algorithms [7], [8], [9], is not necessary in
the case of partitioning the considered applications
on the processor-FPGA system.

3.3 Virtex-based systems
The results from partitioning the five applications in
a SoC that has a Virtex FPGA device [3] as its
reconfigurable logic are given in this section. These
results correspond to the speedups after executing
the kernels on the FPGA.

We have used four different types of 32-bit
embedded RISC processors: an ARM7, an ARM9
[15], and two SimpleScalar processors [19]. The
SimpleScalar processor is an extension of the
MIPS32 IV core [20]. These processors are widely
used in embedded SoCs. The first type of the MIPS
processor (MIPSa) uses one integer ALU unit, while
the second one (MIPSb) has two integer ALU units.
We have used instruction-set simulators for the
considered embedded processors for estimating the
number of execution cycles. More specifically, for
the ARM processors, the ARM Developer Suite
(version 1.2) [15] was utilized, while the
performance for the MIPS-based processors is
estimated using the SimpleScalar simulator tool
[19]. Typical clock frequencies are considered for
the four processors: the ARM7 runs at 100 MHz, the
ARM9 at 250 MHz, and the MIPS processors at 200
MHz. These clock frequencies were taken from
reference designs from the ARM and MIPS
websites. The five applications were optimized for
best performance when compiled for the considered
processors.

The performance gains from applying the
partitioning flow in the five applications are
presented in Fig. 4. For each application, the four
aforementioned processor architectures co-exist
with the FPGA in the hybrid SoC. We have assumed
two different Virtex FPGA devices: (a) the smallest
available Virtex device, the XCV50 FPGA, and (b)
the medium size device XCV400. The clock
frequencies after synthesizing, placing and routing
the designs using the Synplify Pro toolset [16],
range from 45 to 77 MHz for the XCV50 device and
from 37 to 77 MHz for the XCV400. From the
speedups shown in Fig. 4, it is evident that
significant performance improvements are achieved
when critical software parts are mapped on the
FPGA. It is noticed that better performance gains
are achieved for the ARM7 case than the ARM9-
FPGA SoC. This occurs since the speedup of
kernels in the FPGA has greater effect when the

FPGA co-exists with a lower-performance
processor, as it is the ARM7 relative to the ARM9.
Furthermore, the speedup is almost always greater
for the MIPSa than the MIPSb processor, since the
latter one employs one more integer ALU unit.

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Cav
ity

OFDM

Com
pre

sso
r

JP
EG

QSDPCM

Sp
ee

du
p

(a)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Cav
ity

OFDM

Com
pre

sso
r

JP
EG

QSDPCM

Sp
ee

du
p

(b)

ARM7 ARM9 MIPSa MIPSb

XCV50

XCV400

Fig. 4. Speedups from accelerating kernels on
(a) XCV50 and (b) XCV400 devices.

For the case of the different Virtex devices, the
performance improvements are greater for the
XCV400 due to the larger number of Control Logic
Blocks (CLBs) which permit the implementation of
more operations on the FPGA hardware. This leads
to better kernels’ acceleration through the larger
amount of spatial computation due to the increased
number of instantiated operations in the
reconfigurable logic relative to the smaller FPGA
device, the XCV50. The average speedup for the
five applications is 2.1 for the XCV50 and 2.4 for
the XCV400.

3.4 Excalibur-simulated systems
The results from accelerating the kernels of the five
applications on the Excalibur-simulated system [4]
are given in this section. In the Excalibur devices,
an ARM9 processor is used that it is clocked at
200MHz, which is the also case in these
experiments. The applications were again optimized
for best performance when compiled for the ARM9.
The ARM Developer Suite was used for estimating
the cycles required for the software execution. Two

cases of APEX FPGAs are utilized for simulating
the EPXA1 and the EPXA10 Excalibur devices,
where the EPXA10 stands for a larger amount of
reconfigurable logic. After the kernels’ synthesis
with the Synplify Pro, the reported clock
frequencies range from 20 to 38 MHz for the
EPXA1, and from 22 to 30 MHz for the EPXA10.

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Cav
ity

OFDM

Com
pre

sso
r

JP
EG

QSDPCM

EPXA1 EPXA10

Sp
ee

du
p

Fig. 5. Speedups for the Excalibur-simulated

systems.

The speedups after partitioning are given in Fig.
5. Greater improvements are achieved for the
EPXA10-simulated system, as in the case of the
Virtex-based SoCs, where greater performance was
achieved for the larger Virtex device. The average
speedup is 2.1 for the EPXA1 and 2.3 for the
EPXA10. Comparing the speedups of Fig. 5 with
the respective ones for the ARM9-Virtex system,
they are approximately the same although the
ARM9 is clocked at a lower speed and the clock
frequencies after the kernel synthesis on the APEX
devices, are smaller than the ones on the Virtex
FPGAs.

4 Conclusions
A partitioning flow for speeding-up critical software
parts in processor-FPGA systems was presented.
Five DSP applications were executed on two
instances of a generic processor-FPGA platform.
Important performance improvements, which range
from 1.3 to 3.7, have been achieved.

Acknowledgements

This research has been partly funded by the
Alexander S. Onassis Public Benefit Foundation.

References:
[1] T.J. Callahan, J. R. Hauser, J. Wawrzynek, “The

Garp Architecture and C Compiler”, in IEEE
Computer, vol. 33, no. 4, pp 62-69, April 2000.

[2] S. Hauck, T.W. Fry, M.M Hosler, J.P Kao,
“The Chimaera Reconfigurable Functional
Unit”, in IEEE Trans. on VLSI Syst., vol.12,
no.2, pp. 206-217, Feb. 2004.

[3] Virtex FPGAs, Xilinx Inc., www.xilinx.com,
2005.

[4] Excalibur FPGAs, Altera Inc., www.altera.com,
2005.

[5] FSPLIC, ATMEL Inc., www.atmel.com, 2005.
[6] Triscend Corp. www.triscend.com, 2004.
[7] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli,

“System level hardware/software partitioning
based on simulated annealing and tabu search”,
in Design Automation for Embedded Systems,
Springer, vol. 2, no. 1, pp. 5-32, Jan. 1997.

[8] D.D. Gajski, F. Vahid, S. Narayan, and J. Gong,
“SpecSyn: An environment supporting the
specify-explore-refine paradigm for
hardware/software system design”, in IEEE
Trans. on VLSI Syst., vol. 6, no. 1, pp. 84–100,
March 1998.

[9] J. Henkel, “A low power hardware/software
partitioning approach for core-based embedded
systems”, in Proc. of the 36th ACM/IEEE DAC,
pp. 122–127, 1999.

[10] A. Ye, N. Shenoy, P. Baneijee, “A C Compiler
for a Processor with a Reconfigurable
Functional Unit”, in Proc. of FPGA, pp. 95-100,
2000.

[11] K. Bazargan, R. Kastner, S. Ogrenci, M.
Sarrafzadeh, “A C to Hardware/Software
Compiler”, in Proc. of FCCM ’00, pp. 331-332,
2000.

[12] J. Villareal, D. Suresh, G. Stitt, F. Vahid, W.
Najjar, “Improving Software Performance with
Configurable Logic”, in Design Automation for
Embedded Systems, Springer, vol. 7, pp. 325-
339, 2002.

[13] G. Stitt, F. Vahid, S. Nematbakhsh, “Energy
Savings and Speedups from Partitioning Critical
Software Loops to Hardware in Embedded
Systems”, in ACM TECS, vol.3, no.1, pp. 218-
232, Feb. 2004.

[14] Honeywell,http://www.htc.honeywell.com/proj
ects/acsbench, 2005.

[15] ARM Corp, www.arm.com, 2005.
[16] Synplify Pro, www.synplicity.com, 2005.
[17] SUIF2,http://suif.stanford.edu/suif/suif2/index.

html, 2005.
[18] MachineSUIF,

http://www.eecs.harvard.edu/hube/research/mac
hsuif.html, 2005.

[19] SimpleScalar, www.simplescalar.com, 2005.
[20] MIPS Corp., www.mips.com, 2005.

