
Better Reliability Assessment of Database Based Application Software

M. S. HOSAIN†, M. S. ALAM‡
†Department of Computer Science & Engineering

The University of Asia Pacific
House # 52/1, Road # 3/A, Dhanmondi, Dhaka – 1209

BANGLADESH
‡CSE Dept., Bangladesh University of Engineering & Technology, Dhaka – 1000, Bangladesh

Abstract:- Software systems are becoming increasingly more complex and testing it to a reliable system requires a
great deal of effort. Statistical testing promises a solution to this increased testing burden and gives the opportunity
to have statistical inferences like reliability, mean time to failure etc. Today there are hundreds of reliability models
with more models developed every year. Still there does not exist any model that can be applied in all cases. In this
paper we present the feasibility of applying statistical testing based on Markov chain usage model to database
based application software and show that statistical testing gives better reliability assessment than random testing.

Key-Words:- Statistical Software Testing, Software Reliability, Stochastic Modeling, Usage Model, Random
Testing.

1 Introduction
Software testing is the process of executing software
products by using a set of defined inputs to verify that
the execution results of the product match the
predefined set of outputs [1, 2]. The goal of testing is
to prove the software free of bugs and to build a
reliable system. But it is impossible to test software
exhaustively, i.e., testing the application with every
input combination or scenario. Actually testers are
sampling form the input population of the software
under test [3].

Statistical testing is advancing rapidly in response
to these needs. By implementing the collection of
usage data into operational profiles, developers can
utilize well-known statistics to direct the application of
testing, thereby reducing redundant testing, focusing
testing on portions of the software with the biggest
impact on the system, and reducing the amount of
testing required overall [2, 4, 5]. These improvements
can significantly decrease the amount of resources
required for software testing. Statistical testing can
also be used to determine when it is time to stop testing
a software product, through reliability [6, 7].

Statistical testing is appealing theoretically, but is
limited in usage by the kinds of usage models that can
be built [8]. Usage modeling based on Markov chains
gains its credibility in the literature. Whittaker first
proposed Markov chain based statistical testing in [9,

10]. An improved technique for software testing based
on Markov chain usage model was also presented in
[11]. Also a number of research efforts have been
published on software reliability based on this
technique [12, 13]. We also have presented our work
on software reliability [14], where we have
investigated the feasibility of applying Markov chain
technique to large and complicated software systems
and have measured reliability in terms of probability of
executing a randomly selected test case from the usage
model. One of the most important shortfalls of
statistical testing is the lack of evidence of the
effectiveness of statistical testing compared to other
methodologies, such as structural testing, random
testing etc [8]. The work we present here is an
extension of our previous work [14] in the direction of
measuring mean time to failure and showing the
effectiveness of statistical testing over random testing.

The rest of the paper is organized as follows.
Section 2 presents background knowledge on statistical
testing, random testing and software reliability, section
3 shows case study results and finally section 4 draws
a conclusion.

2 Background Knowledge
Test can be designed from a functional or a structural
point of view. Structural testing does look at the

implementation details like programming style, control
method, source language, database design, coding
details etc. In functional testing the program or system
is treated as a black box. It is subjected to inputs, and
its outputs are verified for conformance to specified
behavior [1]. Functional testing takes the user’s point
of view. Statistical testing is one kind of functional
testing which is applied only to large, robust products
with few bugs [1] and is described as follows.

2.1 Statistical Testing
In statistical testing test data is randomly selected
based on probability distributions defined across the
test input domain i.e. according to the usage model of
the system. Statistical testing uses an operational
profile, the statistical behavior of the system under test,
typically modeled as a Markov chain and often
referred as usage chain [2, 9, 10, 12]. The Markov
chain has two special states, one is “Un-Invoked” sate
and the other is “Terminated” state. The first step of
this process is to create a Markov model of software
specification and assigning transition probabilities to
the exiting arcs of states of the chain. Secondly,
generate test cases from the model and execute the test
oracle to software. And finally analyze the test results
for reliability and other statistical assessment and
prediction, and help with decision-making.

Assigning probabilities to arcs is an important area
of research of this study because the argument that test
should follow user patterns is vital. If this is not the
case, then the tests are not a representative sample and
all statistical conclusions are invalid. Three types of
probability distributions can be used – uninformed,
informed and intended [9, 10]. The uninformed
approach simply labels the arcs out of a node with a
uniform distribution. The informed approach uses
actual user data and the intended approach uses the
expected usage of the system under test by “a careful
and reasonable user [9]” rather than the actual usage by
users in the field. Our process uses the intended
approach and can be adapted to the informed approach
as actual usage data becomes available.

2.2 Random Testing
In random testing, which can be seen as a simpler form
of statistical testing, there is an explicit lack of
systematic in the choice of test data, so that there is no
correlation among different tests [2].

2.3 Software Reliability
There are several ways to define reliability. Reliability
can be defined as a function of time, i.e., the software
will operate according to specification for a period of
time [4, 15, 16]. Another simpler definition is that
reliability is the probability that a randomly chosen use
(test case) will be processed correctly [10, 16]. Using
the definition of latter one, the mean time to failure is
the average number of uses between failures [10, 16].

3 Case Study Results

3.1 Usage Markov Model
Fig. 1 shows a simple selection menu of typical
software. The example given here is the same as in
[14]. The up arrow key and down arrow key moves the
cursor from one item to next, and wraps from top to
bottom on an up-arrow and from bottom to top on a
down-arrow key.

Fig. 1: Selection Menu

The first item “Connect“ is used to establish
connection to a database server. The connect window
has two options, Ok and Cancel. Pressing the “Ok”
button establishes a connection to the specified server
with proper authentication and the “Cancel” button
returns to previous state. Once the connection is
established the next four items, Disconnect, Data
Entry, Query and Print can be selected to perform their
respective functions. If connection is not established,
selecting these items give no response. As Connect
state, Disconnect state has also Ok and Cancel button
to disconnect from database server or not. From the
other three options we enter another screen only for
Data Entry state for simplicity and assume that the
same thing could be done for other states. For data
entry state we enter in a new screen, which could insert
or update department record to database. The screen is
pictured in Fig. 2.

Menu

Connect
Disconnect
Data Entry
Query
Print
Exit

Fig. 2: Department Entry Form First State

Initially “New”, “Update” and “Back” button

are enabled and the other controls are disabled.
Selecting data entry from menu displays this screen
and the control focus goes on to “New” button. The tab
key will shift the focus on the next enabled button, and
will rotate right when the focus is on right-most button.
If “New” button is pressed, “New”, “Update” and
“Back” buttons will be disabled and the disabled
controls will be enabled. In that case the screen will
look like Fig. 3. The same thing will happen if
“Update” button is pressed. Now, if “Save” button
is pressed, data provided in the text boxes will be
updated to database. If “Clear” button is pressed the
screen will go to its initial state i.e. “New” state and
“Back” button returns to “Data Entry” state.

Fig. 3: Department Entry Form Second State

The software behavior is modeled in a Markov

chain and is shown in Fig. 4. In the state the CL means
Cursor location and takes on values CN, DC, DE, QR,
PR or Exit for each respective menu item, and CS
means Connection status and takes on the values Y or
N. In addition, we include two states “Un-invoked” and
“Terminated”. A path from the initial “Un-invoked”
state to the final “Terminated” state represents a single
execution of the software and is known as sequence. In
order to generate sequence statistically, probability

distributions are established over the exit arcs at each
state that simulates expected field usage. Table -I lists
each transition for the example chain in Fig. 4 with
probabilities assigned according to its intended use.

Fig. 4: Usage Markov chain for the software

3.2 Testing Chain

Testing chain T is constructed from Usage chain U.
Initially the testing chain is the same as usage chain
with all its arc frequencies set to zero. During testing a
test case is generated from the usage chain by
randomly walking from the “Un-Invoked” state to
“Terminated” state according to its usage probability.
The frequencies of the arcs through which the usage
chain is traversed are incremented by one. If failure
occurs during execution of test a new state labeled jf
is placed in Markov chain exactly as it is ordered in
test sequence. The arcs to and from the new state jf

have frequency count 1. If jf is catastrophic failure,
then the run of software P is aborted, and the arc form

jf goes to “Terminated”; otherwise, the test sequence

can continue, and the arc from jf goes to the next
state in sequence. As the testing chain T evolves it
becomes more and more similar to usage chain U. A
key point is that the test history T is statistically typical
of the usage chain U if and only if convergence is
achieved [6].

3.3 Analytical Results
For the convenient of our study we further present
briefly the reliability analysis from [14]. When two
stochastic processes converge, the numerical value of
log likelihood ratio [10, 17] known as Kullback
discriminant tends to zero. The value is computed by
the following equation:

() 2, log ij
i i j

ij ij

p
D U T p

p
π= ∑) (1)

Where π is the stationary distribution of U, ijp is

the probability of a transition from i to j in U, and ijp)
is the corresponding probability in T.

0

0.002

0.004

0.006

0.008

0.01

0.012

0 100 200 300 400 500 600

sequence

D
(U

, T
)

Fig. 5: Plot of D (U, T)

Fig. 5 shows plots of D (U, T). When testing chain
grows quite similar to usage chain i.e. the test history
reflects the actual usage pattern, the value of D (U, T)
becomes very small. Test should stop at this point.
Whenever a failure occurs the value of D (U, T)
increases significantly so additional tests require
minimizing that effect [10, 14].

Reliability is the probability that a randomly
chosen test case beginning with “Un-invoked” and
ending with the first occurrence of “Terminated” will
not contain a failure state. It is measured by the
following equation:

, , , ,Un inTerm Un inTerm Un in j jTerm
j

R p p R
τ

− − −
∈

= + ∑)) (2)

Where τ is the set of transient (non-absorbing)
states. Fig. 6 depicts a plot of R for 250 sequences.
Whenever there is a failure there is a sharper decrease
in R, because the failures are probability-weighted
according to their location in chain [10].

Table - I: Transition probabilities for the example
usage chain

SL# From state Trans.

Stimuli
To state Est.

Prob.
1 Un-Invoked I

nvoke
{CL=CN, CS=No} 1.00

2 {CL=CN,
 CS=No}

↓
↑
↵

{CL=DC, CS=No}
{CL=Ext, CS=No}
{Connect}

0.10
0.10
0.80

3 {CL=DC,
CS=No}

↓
↑
↵

{CL=DE, CS=No}
{CL=CN, CS=No}
{CL=DC, CS=No}

0.33
0.34
0.33

4 {CL=DE,
CS=No}

↓
↑
↵

{CL=QR, CS=No}
{CL=DC, CS=No}
{CL=DE, CS=No}

0.33
0.34
0.33

5 {CL=QR,
CS=No}

↓
↑
↵

{CL= R, CS=No}
{CL= E, CS=No}
{CL= R, CS=No}

0.33
0.34
0.33

6 {CL=PR,
CS=No}

↓
↑
↵

{CL=Ext, CS=No}
{CL=QR, CS=No}
{CL=PR, CS=No}

0.34
0.33
0.33

7 {CL=Ext,
CS=No}

↓
↑
↵

{CL=CN, CS=No}
{CL=PR, CS=No}
{Terminated}

0.34
0.33
0.33

8 {CL=CN,
CS=Yes}

↓
↑
↵

{CL=DC, CS=Yes}
{CL=Ext, CS=Yes}
{CL=CN, CS=Yes}

0.50
0.35
0.15

9 {CL=DC,
CS=Yes}

↓
↑
↵

{CL=DE, CS=Yes}
{CL=CN, CS=Yes}
{Disconnect}

0.70
0.15
0.15

10 {CL=DE,
CS=Yes}

↓
↑
↵

{CL=QR, CS=Yes}
{CL=DC, CS=Yes}
{Data Entry New}

0.25
0.25
0.50

11 {CL=QR,
CS=Yes}

↓
↑
↵

{CL=PR, CS=Yes}
{CL=DE, CS=Yes}
{Query}

0.25
0.25
0.50

12 {CL=PR,
CS=Yes}

↓
↑
↵

{CL=Ext, CS=Yes}
{CL=QR, CS=Yes}
{Print}

0.25
0.25
0.50

13 {CL=Ext,
CS=Yes}

↓
↑
↵

{CL=CN, CS=Yes}
{CL=PR, CS=Yes}
{Terminated}

0.15
0.35
0.50

14 {Connect} Ok
Cancel

{CL=CN, CS=Yes}
{CL=CN, CS=No}

0.85
0.15

15 {Disconnect} Ok
Cancel

{CL=DC, CS=No}
{CL=DC, CS=Yes}

0.60
0.40

16 {Data Entry
New}

Tab
↵

{Update}
{Save}

0.40
0.60

17 {Update} Tab
↵

{Back}
{Save}

0.50
0.50

18 {Back} Tab
↵

{Data Entry New}
{CL=DE, CS=Yes}

0.20
0.80

19 {Save} Tab
↵

{Clear}
{Data Entry New}

0.20
0.80

20 {Clear} Tab
↵

{Save}
{Data Entry New}

0.50
0.50

21 {Query} Query
Data

{CL=QR, CS=Yes} 1.00

22 {Print} Print
Data

{CL=PR, CS=Yes} 1.00

23 {Terminated} Null Un-Invoked 1.00

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 100 200 300

Sequences

R

Fig. 6: Plot of R

In this study the mean time to failure is computed
as the expected number of steps between failures,
which is the expected number of state transitions
encountered between occurrences of failure states in
the testing chain. This value is computed as follows:

1 1,..., ,...,

(1)
m n

i ij j
i f f j u u

M v p m
∈ ∈

 
= + 

 
∑ ∑) (3)

where iv is the conditional long-run probability

for failure state if , given that the process is in a failure

state, jm is the mean number of steps until the first

occurrence of any failure state from j, 1 ,..., nu u is the

set of usage chain states, and 1,..., mf f is the set of
failure states. Fig. 7 is a plot of M for 250 sequences
generated from our example software.

0
500

1000
1500
2000
2500
3000
3500
4000

0 50 100 150 200 250 300

sequences

M

Fig. 7: Plot of M

The amount of time spent in any state in the long
run is equal to the stationary probability of each state

after the test process stops. We compute the stationary
probabilities and are shown in Fig. 8.

0

0.05

0.1

0.15

0.2

0.25

states

p
ro

b
ab

ili
ty

Fig. 8: Plot of stationary probabilities of states of the

testing chain

3.4 Test Comparison
One of the major shortfalls of statistical testing is the
lack of evidence of the effectiveness of statistical
testing compared to other methodologies, such as
structural testing [8], random testing etc. We assign
equal probabilities to each exiting arcs from a state,
generate test cases that represent random testing and
measure reliability to compare the test processes.

0.84

0.86
0.88

0.9

0.92
0.94

0.96
0.98

1
1.02

0 50 100 150 200 250 300

sequence

R

usage probability equal probability

Fig. 9: Plot of R s

From Fig. 9 we find that if the fault lies on the path
of heavy usage probability than it reveals early in
statistical testing while the fault reveals lately in
random testing. If we set the target reliability to 0.98
we see from Fig. 9 that random testing may not reveal
one bug. But if the fault lies on the less usage
probability path than random testing reveals the fault
early than statistical testing but this does not jeopardize
our test effort as the same number of bugs are revealed

by statistical testing before attaining the desired
reliability and this is shown in Fig. 10.

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

0 50 100 150 200 250 300

sequence

R

Usage probability equal probability

Fig. 10: Plot of R s

4 Conclusion
Statistical testing promises a practical option for
software test engineers in the development and
analysis of usage models and automatic test input
generation. Markov chain usage models can be
constructed in a diverse set of application domains. In
this paper we have shown its applicability to database
based application software. Though our example is a
small one our approach proves its viability in
measuring reliability for large and complex software
systems. We also give evidence of the effectiveness of
statistical testing compared to random testing. One
important limitation of this approach is that the model
becomes complex for large software systems. Further
research could be done to represent the model in a
concise way.

References:
[1] Boris Beizer, Software Testing Techniques, second

edition, Boston, Mass.: Int’l Thomason Computer
Press, 1990.

[2] HAPPANEN, Pentti, PULKKINEN, Urho,
KORHONEN and Jukka, Usage Models in
Reliability Assessment of Software-based
Systems, STUK-YTO-TR 128, Helsinki 1997, pp.
1-48.

[3] J. A. Whittaker, Stochastic Software Testing,
Annals of Software Engineering, Vol. 4, 1997, pp.
115-131.

[4] J. D. Musa, Operational Profiles in Software
Reliability Engineering, IEEE Software, Vol. 10,
No. 2, March 1993, pp. 14-32.

[5] Taylor H. M and Karlin S, An Introduction to
Stochastic Modeling, International Edition,
Academic Press, New York, 1984.

[6] J.D. Musa, Software Reliability Engineering,
McGraw-Hill, New York, 1998.

[7] S. Karlin and H.M. Taylor, A First Course in
Stochastic Processes, second ed., Academic Press,
New York, 1975.

[8] Robert J. Weber, Statistical Software Testing with
Parallel Modeling: A Case Study, Proceedings of
the 15th International Symposium on Software
Reliability Engineering, 2004.

[9] J. A. Whittaker and J. H. Poore, Markov Analysis
of Software Specifications, ACM Transactions on
Software Engineering Methodology, Vol. 2,
January 1993, pp. 93-106.

[10] J. A. Whittaker and M. G. Thomason, A Markov
Chain Model for Statistical Software Testing,
IEEE Transactions on Software Engineering, Vol.
20, No. 10, October 1994, pp. 812-824.

 [11] Kirk Sayre, Improved Techniques for Software
Testing Based on Markov Chain Usage Models,
Ph.D. dissertation, Dept. of Computer Science,
University of Tennessee, Knoxville, USA,
December 1999.

[12] Chaitanya Kallepalli and Jeff Tian. Measuring and
Modeling Usage and Reliability for Statistical Web
Testing, IEEE transactions on software
engineering, Vol. 27, No. 11, November 2001, pp.
1023-2001.

[13] F. Zhen and C. Peng, A System Test Methodology
Based on the Markov Chain Usage Model,
Proceedings of the 8 th International Conference on
Computer Supported Cooperative Work and
Design, 2003, pp. 160 – 165.

[14] Md. Shazzad Hosain and Md. Shamsul Alam,
Software Reliability Using Markov Chain Usage
Model, Proc. of the 3rd International Conference
on Electrical & Computer Engineering, Dhaka,
Bangladesh, December 2004.

[15] J.D. Musa, Software Reliability Engineering, New
York: McGraw-Hill, 1998.

[16] J.H. Poore, Harlan D. Mills and David Mutchler,
Planning and Certifying Software System
Reliability, IEEE software, Vol. 10, No. 1, January
1993, pp. 88-99.

[17] S. Kullback, Information theory and statistics,
New York: Wiley, 1958.

