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Abstract:-  Software systems are becoming increasingly more complex and testing it to a reliable system requires a 
great deal of effort. Statistical testing promises a solution to this increased testing burden and gives the opportunity 
to have statistical inferences like reliability, mean time to failure etc. Today there are hundreds of reliability models 
with more models developed every year. Still there does not exist any model that can be applied in all cases. In this 
paper we present the feasibility of applying statistical testing based on Markov chain usage model to database 
based application software and show that statistical testing gives better reliability assessment than random testing. 
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1 Introduction 
Software testing is the process of executing software 
products by using a set of defined inputs to verify that 
the execution results of the product match the 
predefined set of outputs [1, 2]. The goal of testing is 
to prove the software free of bugs and to build a 
reliable system. But it is impossible to test software 
exhaustively, i.e., testing the application with every 
input combination or scenario. Actually testers are 
sampling form the input population of the software 
under test [3].   

Statistical testing is advancing rapidly in response 
to these needs.  By implementing the collection of 
usage data into operational profiles, developers can 
utilize well-known statistics to direct the application of 
testing, thereby reducing redundant testing, focusing 
testing on portions of the software with the biggest 
impact on the system, and reducing the amount of 
testing required overall [2, 4, 5].  These improvements 
can significantly decrease the amount of resources 
required for software testing.  Statistical testing can 
also be used to determine when it is time to stop testing 
a software product, through reliability [6, 7].  

Statistical testing is appealing theoretically, but is 
limited in usage by the kinds of usage models that can 
be built [8]. Usage modeling based on Markov chains 
gains its credibility in the literature. Whittaker first 
proposed Markov chain based statistical testing in [9, 

10]. An improved technique for software testing based 
on Markov chain usage model was also presented in 
[11]. Also a number of research efforts have been 
published on software reliability based on this 
technique [12, 13]. We also have presented our work 
on software reliability [14], where we have 
investigated the feasibility of applying Markov chain 
technique to large and complicated software systems 
and have measured reliability in terms of probability of 
executing a randomly selected test case from the usage 
model. One of the most important shortfalls of 
statistical testing is the lack of evidence of the 
effectiveness of statistical testing compared to other 
methodologies, such as structural testing, random 
testing etc [8]. The work we present here is an 
extension of our previous work [14] in the direction of 
measuring mean time to failure and showing the 
effectiveness of statistical testing over random testing.  

The rest of the paper is organized as follows. 
Section 2 presents background knowledge on statistical 
testing, random testing and software reliability, section 
3 shows case study results and finally section 4 draws 
a conclusion. 

 
 

2 Background Knowledge 
Test can be designed from a functional or a structural 
point of view. Structural testing does look at the 



implementation details like programming style, control 
method, source language, database design, coding 
details etc. In functional testing the program or system 
is treated as a black box. It is subjected to inputs, and 
its outputs are verified for conformance to specified 
behavior [1]. Functional testing takes the user’s point 
of view. Statistical testing is one kind of functional 
testing which is applied only to large, robust products 
with few bugs [1] and is described as follows. 
 
 
2.1 Statistical Testing 
In statistical testing test data is randomly selected 
based on probability distributions defined across the 
test input domain i.e. according to the usage model of 
the system. Statistical testing uses an operational 
profile, the statistical behavior of the system under test, 
typically modeled as a Markov chain and often 
referred as usage chain [2, 9, 10, 12]. The Markov 
chain has two special states, one is “Un-Invoked” sate 
and the other is “Terminated” state. The first step of 
this process is to create a Markov model of software 
specification and assigning transition probabilities to 
the exiting arcs of states of the chain. Secondly, 
generate test cases from the model and execute the test 
oracle to software. And finally analyze the test results 
for reliability and other statistical assessment and 
prediction, and help with decision-making. 

Assigning probabilities to arcs is an important area 
of research of this study because the argument that test 
should follow user patterns is vital. If this is not the 
case, then the tests are not a representative sample and 
all statistical conclusions are invalid. Three types of 
probability distributions can be used – uninformed, 
informed and intended [9, 10]. The uninformed 
approach simply labels the arcs out of a node with a 
uniform distribution. The informed approach uses 
actual user data and the intended approach uses the 
expected usage of the system under test by “a careful 
and reasonable user [9]” rather than the actual usage by 
users in the field. Our process uses the intended 
approach and can be adapted to the informed approach 
as actual usage data becomes available. 

 
 

2.2 Random Testing 
In random testing, which can be seen as a simpler form 
of statistical testing, there is an explicit lack of 
systematic in the choice of test data, so that there is no 
correlation among different tests [2].  
 

2.3 Software Reliability 
There are several ways to define reliability. Reliability 
can be defined as a function of time, i.e., the software 
will operate according to specification for a period of 
time [4, 15, 16]. Another simpler definition is that 
reliability is the probability that a randomly chosen use 
(test case) will be processed correctly [10, 16]. Using 
the definition of latter one, the mean time to failure is 
the average number of uses between failures [10, 16].  
 
 
3 Case Study Results 
 
 
3.1 Usage Markov Model 
Fig. 1 shows a simple selection menu of typical 
software. The example given here is the same as in 
[14]. The up arrow key and down arrow key moves the 
cursor from one item to next, and wraps from top to 
bottom on an up-arrow and from bottom to top on a 
down-arrow key. 
 
 
 
 
 
 
 
 
 

Fig. 1: Selection Menu 
 

The first item “Connect“ is used to establish 
connection to a database server. The connect window 
has two options, Ok and Cancel. Pressing the “Ok” 
button establishes a connection to the specified server 
with proper authentication and the “Cancel” button 
returns to previous state. Once the connection is 
established the next four items, Disconnect, Data 
Entry, Query and Print can be selected to perform their 
respective functions. If connection is not established, 
selecting these items give no response. As Connect 
state, Disconnect state has also Ok and Cancel button 
to disconnect from database server or not. From the 
other three options we enter another screen only for 
Data Entry state for simplicity and assume that the 
same thing could be done for other states. For data 
entry state we enter in a new screen, which could insert 
or update department record to database. The screen is 
pictured in Fig. 2. 

Menu 

Connect 
Disconnect 
Data Entry 
Query 
Print 
Exit 



 
Fig. 2: Department Entry Form First State 

 
Initially “New”, “Update” and “Back” button 

are enabled and the other controls are disabled. 
Selecting data entry from menu displays this screen 
and the control focus goes on to “New” button. The tab 
key will shift the focus on the next enabled button, and 
will rotate right when the focus is on right-most button. 
If “New” button is pressed, “New”, “Update” and 
“Back” buttons will be disabled and the disabled 
controls will be enabled. In that case the screen will 
look like Fig. 3. The same thing will happen if 
“Update” button is pressed. Now, if “Save” button 
is pressed, data provided in the text boxes will be 
updated to database. If “Clear” button is pressed the 
screen will go to its initial state i.e. “New” state and 
“Back” button returns to “Data Entry” state. 

 

 
Fig. 3: Department Entry Form Second State 

 
The software behavior is modeled in a Markov 

chain and is shown in Fig. 4. In the state the CL means 
Cursor location and takes on values CN, DC, DE, QR, 
PR or Exit for each respective menu item, and CS 
means Connection status and takes on the values Y or 
N. In addition, we include two states “Un-invoked” and 
“Terminated”. A path from the initial “Un-invoked” 
state to the final “Terminated” state represents a single 
execution of the software and is known as sequence. In 
order to generate sequence statistically, probability 

distributions are established over the exit arcs at each 
state that simulates expected field usage. Table -I lists 
each transition for the example chain in Fig. 4 with 
probabilities assigned according to its intended use. 

 

 
Fig. 4: Usage Markov chain for the software 

 
 

3.2 Testing Chain 

Testing chain T is constructed from Usage chain U. 
Initially the testing chain is the same as usage chain 
with all its arc frequencies set to zero. During testing a 
test case is generated from the usage chain by 
randomly walking from the “Un-Invoked” state to 
“Terminated” state according to its usage probability. 
The frequencies of the arcs through which the usage 
chain is traversed are incremented by one. If failure 
occurs during execution of test a new state labeled jf  
is placed in Markov chain exactly as it is ordered in 
test sequence. The arcs to and from the new state jf  

have frequency count 1. If jf  is catastrophic failure, 
then the run of software P is aborted, and the arc form 

jf  goes to “Terminated”; otherwise, the test sequence 

can continue, and the arc from jf  goes to the next 
state in sequence. As the testing chain T evolves it 
becomes more and more similar to usage chain U. A 
key point is that the test history T is statistically typical 
of the usage chain U if and only if convergence is 
achieved [6]. 
 
 



3.3 Analytical Results 
For the convenient of our study we further present 
briefly the reliability analysis from [14]. When two 
stochastic processes converge, the numerical value of 
log likelihood ratio [10, 17] known as Kullback 
discriminant tends to zero. The value is computed by 
the following equation: 

( ) 2, log ij
i i j

ij ij

p
D U T p

p
π= ∑ )    (1) 

Where π is the stationary distribution of U, ijp  is 

the probability of a transition from i to j in U, and ijp)  
is the corresponding probability in T. 
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Fig. 5: Plot of D (U, T) 

Fig. 5 shows plots of D (U, T). When testing chain 
grows quite similar to usage chain i.e. the test history 
reflects the actual usage pattern, the value of D (U, T) 
becomes very small. Test should stop at this point. 
Whenever a failure occurs the value of D (U, T) 
increases significantly so additional tests require 
minimizing that effect [10, 14]. 

Reliability is the probability that a randomly 
chosen test case beginning with “Un-invoked” and 
ending with the first occurrence of “Terminated” will 
not contain a failure state. It is measured by the 
following equation: 

 

, , , ,Un inTerm Un inTerm Un in j jTerm
j

R p p R
τ

− − −
∈

= + ∑) )  (2) 

Where τ  is the set of transient (non-absorbing) 
states. Fig. 6 depicts a plot of R for 250 sequences. 
Whenever there is a failure there is a sharper decrease 
in R, because the failures are probability-weighted 
according to their location in chain [10]. 

 

Table - I: Transition probabilities for the example 
usage chain 

 
SL# From state  Trans. 

Stimuli 
To state  Est. 

Prob. 
1 Un-Invoked I

nvoke 
{CL=CN, CS=No} 1.00 

2 {CL=CN, 
 CS=No} 

↓ 
↑ 
↵ 

{CL=DC, CS=No} 
{CL=Ext, CS=No} 
{Connect} 

0.10 
0.10 
0.80 

3 {CL=DC,  
CS=No} 

↓ 
↑ 
↵ 

{CL=DE, CS=No} 
{CL=CN, CS=No} 
{CL=DC, CS=No} 

0.33 
0.34 
0.33 

4 {CL=DE,  
CS=No} 

↓ 
↑ 
↵ 

{CL=QR, CS=No} 
{CL=DC, CS=No} 
{CL=DE, CS=No} 

0.33 
0.34 
0.33 

5 {CL=QR,  
CS=No} 

↓ 
↑ 
↵ 

{CL= R, CS=No} 
{CL= E, CS=No} 
{CL= R, CS=No} 

0.33 
0.34 
0.33 

6 {CL=PR,  
CS=No} 

↓ 
↑ 
↵ 

{CL=Ext, CS=No} 
{CL=QR, CS=No} 
{CL=PR, CS=No} 

0.34 
0.33 
0.33 

7 {CL=Ext,  
CS=No} 

↓ 
↑ 
↵ 

{CL=CN, CS=No} 
{CL=PR, CS=No} 
{Terminated} 

0.34 
0.33 
0.33 

8 {CL=CN,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=DC, CS=Yes} 
{CL=Ext, CS=Yes} 
{CL=CN, CS=Yes} 

0.50 
0.35 
0.15 

9 {CL=DC,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=DE, CS=Yes} 
{CL=CN, CS=Yes} 
{Disconnect} 

0.70 
0.15 
0.15 

10 {CL=DE,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=QR, CS=Yes} 
{CL=DC, CS=Yes} 
{Data Entry New} 

0.25 
0.25 
0.50 

11 {CL=QR,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=PR, CS=Yes} 
{CL=DE, CS=Yes} 
{Query} 

0.25 
0.25 
0.50 

12 {CL=PR,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=Ext, CS=Yes} 
{CL=QR, CS=Yes} 
{Print} 

0.25 
0.25 
0.50 

13 {CL=Ext,  
CS=Yes} 

↓ 
↑ 
↵ 

{CL=CN, CS=Yes} 
{CL=PR, CS=Yes} 
{Terminated} 

0.15 
0.35 
0.50 

14 {Connect} Ok 
Cancel 

{CL=CN, CS=Yes} 
{CL=CN, CS=No} 

0.85 
0.15 

15 {Disconnect} Ok 
Cancel 

{CL=DC, CS=No} 
{CL=DC, CS=Yes} 

0.60 
0.40 

16 {Data Entry  
New} 

Tab 
↵ 

{Update} 
{Save} 

0.40 
0.60 

17 {Update} Tab 
↵ 

{Back} 
{Save} 

0.50 
0.50 

18 {Back} Tab 
↵ 

{Data Entry New} 
{CL=DE, CS=Yes} 

0.20 
0.80 

19 {Save} Tab 
↵ 

{Clear} 
{Data Entry New} 

0.20 
0.80 

20 {Clear} Tab 
↵ 

{Save} 
{Data Entry New} 

0.50 
0.50 

21 {Query} Query 
Data 

{CL=QR, CS=Yes} 1.00 

22 {Print} Print 
Data 

{CL=PR, CS=Yes} 1.00 

23 {Terminated} Null Un-Invoked 1.00 
 



0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 100 200 300

Sequences

R

 
Fig. 6: Plot of R 

In this study the mean time to failure is computed 
as the expected number of steps between failures, 
which is the expected number of state transitions 
encountered between occurrences of failure states in 
the testing chain. This value is computed as follows: 

1 1,..., ,...,

( 1)
m n

i ij j
i f f j u u

M v p m
∈ ∈

 
= + 

 
∑ ∑ )   (3) 

where iv  is the conditional long-run probability 

for failure state if , given that the process is in a failure 

state, jm  is the mean number of steps until the first 

occurrence of any failure state from j, 1 ,..., nu u is the 

set of usage chain states, and 1,..., mf f  is the set of 
failure states. Fig. 7 is a plot of M for 250 sequences 
generated from our example software. 
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Fig. 7: Plot of M 

The amount of time spent in any state in the long 
run is equal to the stationary probability of each state 

after the test process stops. We compute the stationary 
probabilities and are shown in Fig. 8. 
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Fig. 8: Plot of stationary probabilities of states of the 

testing chain 

 
3.4 Test Comparison 
One of the major shortfalls of statistical testing is the 
lack of evidence of the effectiveness of statistical 
testing compared to other methodologies, such as 
structural testing [8], random testing etc. We assign 
equal probabilities to each exiting arcs from a state, 
generate test cases that represent random testing and 
measure reliability to compare the test processes.  
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Fig. 9: Plot of R s 

From Fig. 9 we find that if the fault lies on the path 
of heavy usage probability than it reveals early in 
statistical testing while the fault reveals lately in 
random testing. If we set the target reliability to 0.98 
we see from Fig. 9 that random testing may not reveal 
one bug. But if the fault lies on the less usage 
probability path than random testing reveals the fault 
early than statistical testing but this does not jeopardize 
our test effort as the same number of bugs are revealed 



by statistical testing before attaining the desired 
reliability and this is shown in Fig. 10. 
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Fig. 10: Plot of R s 

 
 
4 Conclusion 
Statistical testing promises a practical option for 
software test engineers in the development and 
analysis of usage models and automatic test input 
generation. Markov chain usage models can be 
constructed in a diverse set of application domains. In 
this paper we have shown its applicability to database 
based application software. Though our example is a 
small one our approach proves its viability in 
measuring reliability for large and complex software 
systems. We also give evidence of the effectiveness of 
statistical testing compared to random testing. One 
important limitation of this approach is that the model 
becomes complex for large software systems. Further 
research could be done to represent the model in a 
concise way.  
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