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Abstract:  In this research, three methods for the detection of crack defects on integrated circuit 

(IC) packages are proposed. These methods use blob analysis technique in image processing 

stage, and use multi-layered perceptron (MLP) neural network to classify the IC package. This 

paper presents the various filters and operations employed in blob analysis. The simulation results 

have shown, that a two-layer back-propagation neural network, which has a log-sigmoid transfer 

function in the hidden and output layer, could be trained to classify the IC package image. An 

early stopping technique was used in this study to provide benefits to the network performance in 

terms of a decrease in over-fitting. It was found that the optimal number of hidden neurons for the 

network 1,2 and 3 were 12, 12 and 10. The first method produced an accuracy of 74.82% with 

87.72 ms processing time, while the second method utilizing the same classifier, achieved 

86.17% accuracy with 119.45 ms processing time. The third method achieved 96.1% accuracy 

with 188.44 ms processing speed. The results obtained in this study indicated that the third 

method proceed better performance with higher accuracy and processing speed below 200 ms. 
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1. Introduction 
In the semiconductor industry, machine 

vision is extensively used in various stages 

on the IC-device-manufacturing process [1]. 

The main automated inspection processes in 

IC manufacturing include mask and reticle 

inspection, in-process pattern inspection and 

final chip inspection for quality control [2]. 

Among the many types of IC package defect 

such as incomplete fill, void and off center; 

crack is the biggest problem faced by the 

manufacturer, especially the hairline crack. 

The hairline crack is difficult to be detected 

by human operator, and it can cause internal 

damage in the IC chip. 

 Crack usually occurs at the edge of 

the IC chip. Hairline crack has a different 

feature, which is a very tight breakage on 

package surface that may not extend through 

the package surface, and it is nearly 

invisible. The dominant cracking 

mechanism is moisture expansion due to 

thermal processing acting on concentrations 

of water vapor at the back of surface of the 

die-paddle, and at the front surface of the 

silicon die [3]. Fig 1(a) shows DIP (dual 

inline package) IC package with a hairline 

crack, while Fig 1(b) shows IC package with 

an apparent crack. 

 

 

 
 

Fig 1(a). Hairline crack 

 



 

 

 

 

 

 

 
 

Fig 1(b).  Apparent crack 

 

 The objective of this project is to 

design inspection system software that will 

automatically detect cracks on IC packages. 

The system uses the blob analysis technique 

in image processing stage, and followed by 

the back propagation neural network to 

classify the features. This paper presents 

three methods to detect crack on IC package, 

with each method adopts various approach 

in the image processing stage. Performance 

comparison was then conducted to 

determine the best method for the crack 

detection system. In this project, the image 

processing algorithm was developed using 

the LabVIEW™ software, while the 

network training was developed using 

MATLAB® software. 

 

 

2. Approach and methods 
All the three crack detection methods 

utilised a reference coordinate system, 

image masking, image processing and neural 

network technique. The procedure starts by 

the image extraction, where images stored in 

AVI format, are converted into individual 

image frames, in bitmap files. A total of 624 

images consisting 260 defects and 364 non-

defects images with 720x576 resolution 

pixels were used in the experiment. 

 

 

2.1 A reference coordinate system. 
Before the image-processing technique is 

applied, a reference coordinate system must 

be built in order to develop an automatic 

crack inspection system. A reference 

coordinate system is utilised to locate the 

reference feature in the inspection image, in 

order to move the region of interest (ROI) in 

relation to the object. The IC under 

inspection usually appears shifted or rotated 

within the image that need to be processed. 

This is because the size of the IC is smaller 

than the holding pocket. In this process, the 

ROI must be shifted and rotated the same 

way as the object.  

 In order to develop a reference 

coordinate system, we need to determine the 

x and y position, and orientation for 

coordinate reference of the object in the 

image using the edge detection method. This 

has been done by using LabVIEW™ 

function, i.e. IMAQ Coordinate System (2 

Rect). This function is used to compute a 

coordinate system based on the position of 

an object in a search area of an image [4]. 

Two rectangular search areas have been 

specified, each containing one separate, 

straight boundary of the object and the 

boundaries cannot be parallel, as shown in 

Fig 3.  

 

 

 
 

 
Fig 3. Rectangular search area 

 
The first rectangular search area is the IC 

leads, which represented x-axis, while 

second search area is the vertical edge of IC 

package, which is represented y-axis. Then, 

the coordinate system axis direction is 

chosen. The outputs of this function are the 

origin, angle and axes direction of the 

coordinate system.  To build a coordinate 

system for the first time, Find Reference 

mode in IMAQ Coordinate System (2 Rect) 

function is set. Next, the Update Reference 

mode is set to update the coordinate system 

in subsequent image. During this step, 

IMAQ Coordinate System (2 rect) function 

First rect search 

Second rect search area 



 

 

 

 

 

 

locates the features in the search area and 

builds a new coordinate system based on the 

new location of the features. After a 

reference has been defined, the coordinate 

systems moves in relation to the object and 

the preprocessing automatically move the 

ROI to the correct position in the new 

coordinate system. 

 

 

2.2 Removes IC leads, background, 

text & notch. 
In the next step, the IC leads, notch, text 

images and background need to be removed, 

so that the detection process of crack 

become simpler. This was done by defining 

the regions to process with an image mask. 

 

 

     
 

Fig 4. Removes IC leads, background, text 

& notch image. 

 

In order to remove the IC leads and 

the background, the ROI was selected on the 

IC package, and the image was masked with 

the region outside the ROI. While, for the 

text image and notch, the ROI was selected 

on the text image and notch, with inter-ROI 

masking conducted. Fig 4 shows the masked 

image. 

 

 

2.3 Image processing 
Development of a reference coordinate 

system and image masking were conducted 

for all three methods. Blob analysis 

technique that contains a variety of 

operations in image processing stage to 

extract the crack features was applied across 

the methods. Blob (binary large object) 

analysis technique is used to extract the 

crack from the image, and to find the 

statistical information such as size of blob, 

area and the perimeter that were measured 

from the binary objects [4]. The image 

processing operations for all three methods 

are summarised in the Table 1. The 

extracted crack object is termed ‘blob’, after 

going through the image processing stage. 

Then, these blobs were measured to 

determine its features. All the measurements 

are summarised in Table 1. These 

measurements act as the input to the neural 

network classifier as shown in the Table 2. 

 

 

2.4 Neural Network Classifier 
624 data were utilised for the image 

processing stage, while another 332 data 

were used for the neural network classifier 

training. In order to make the data set for 

neural network, these data were restructured 

into matrices with 342 rows, and 

subsequently, imported to the MATLAB
®
 

software. The MATLAB
®
 Neural Network 

Toolbox was used to construct the artificial 

neural network in this study. 

 In this study, the data matrix used 

for training the neural network was 

normalised to the range 0-1. In the training 

procedure, normalize data value was 

randomly inputted to the network. An early 

stopping technique was chosen in this study 

to acquire an acceptable generalization 

performance, which is used to prevent over 

fitting of the data by the network [5].  

 The collected data was divided into 

4 subset. The first subset was the training 

set, which was used for computing the 

gradient and updating the network, weight 

and biases [6]. It has 206 data, which 

contains 96 defect image data, and 110 good 

image-data. The second subset was the 

validation set. The error on validation set 

was monitored during the training process. 

The third set was the test set. The test set 

error was not used during the training, but it 

was used to compare the different models. 

There were 68 data for validation and test 

set, which each set containing 36 good 

image-data and 32 defects. The forth set was 

the real data set, which is used to estimate

IC leads & background region 

Notch 

region 

Text region 



 

 

 

 

 

 

Table 1. Image processing techniques for method 1, 2 and 3. 

 
Method 1 2 3 

Image 

enhancement 

techniques 

1. Brightness, 

contrast, gamma 

2. Horizontal Kirsch 

filter 

3. Low pass filter 

 

1. Invert gray image 

2. Laplacian filter 

3. LUT: exponent 

4. Gray morphology : 

proper close 

5. Sobel filter 

1. IMAQ Count Objects 

function 

2. Find min pixel, extract & 

change value to 0 

3. Convert new pixel value 

to image 

4. Laplacian filter 

5. Gray morphology : open 

6. Gray morphology: erode 

7. Median filter 

Create binary 

image 

Threshold (threshold 

values : 64-255) 

Threshold (threshold 

values : 51-255) 

Automatic threshold : 

Entropy 

Improve a binary 

image 

1. IMAQ Remove 

Particle function 

2. Invert binary image 

1. IMAQ  Particle Filter 

function 

 

1. Invert binary image 

2. IMAQ Particle Filter 

function 

3. Morphology : Dilate 

(2x7) 

4. IMAQ Particle Filter 

function 

5. Morphology : Dilate 

(1x5) 

Make a 

particles/blobs 

measurement 

Parameters : 

Blob area, number of 

holes, hole’s area, 

hole’s perimeter 

Parameter: 

Blob area 

Parameters: 

Coordinates (min x, min y, 

max x, max y), width, chord 

& axes (max intercept, mean 

intercept perpendicular) 

 

 

 

Table 2. Neural network input parameter for each method. 

 
Number of 

method 
1 2 3 

Input parameter 

1. Blob area 

2. Number of holes 

3. Holes’ area 

4. Holes perimeter 

5. Blob area (from 

IMAQ function) 

Blobs area at : 

1. right side package 

2. left side package 

3. upper side package 

4. lower side package 

1. Blobs area 

2. min x 

3. max x 

4. min y 

5. max y 

6. width 

7. max intercept 

8. mean intercept 

perpendicular 

 

 

 



 

 

 

 

 

 

the network performance after training has 

finished. This set contains 182 good image 

data 100 defect image-data. 

 All the training simulations were 

performed with the same architecture. The 

architecture of the neural network chosen for 

this study was a multi-layer perceptron 

(MLP) model, with single hidden layer, and 

log-sigmoid transfer function in hidden and 

output layers. The training algorithm that 

was used in this study was Levenberg 

Marquadt algorithm. The algorithm is 

regarded as one of the fastest methods for 

training moderate-sized back propagation 

neural network [7]. It is a very efficient 

when training networks, which have up to a 

few hundred weights [8]. This algorithm has 

also shown high performance in function 

approximation problems. 

For the network, the number of 

output neuron was 1, while the number of 

hidden neuron for each network is as shown 

in Table 3. The determination of the optimal 

number of hidden neurons was solved 

through trial and error approach. The 

network within 5 to 15 hidden neurons was 

simulated in order to determine the optimal 

number of hidden neurons. Although there 

seems to be no upper limit in the neural 

network using the early stopping algorithm, 

it was not necessary to use too many hidden 

neurons because it needs more computation 

time and memory requirement [6]. The 

network was trained for 30 iteration for each 

neuron, and then, the average of mean 

square error (MSE) was calculated. The 

neural network with the best performance 

was determined by minimum average of 

MSE. The values of minimum average of 

MSE are given in Table 3. 

 

Table 3. The neural network simulation 

results for method 1,2 & 3 

Network 
Input 

neurons 

Hidden 

neurons 

Min 

average of 

MSE  

 

Method 1 

Method 2 

Method 3 

 

 

5 

5 

8 

 

12 

12 

10 

 

0.1803 

0.0701 

0.0565 

3. Results and discussion 
The most important factors in classifying 

crack inspection system are the 

classification accuracy and processing 

speed. Since the system must strive for real-

time processing capabilities, the algorithms 

for all three methods need to be fast in 

execution. In this project, the processing 

speed was targeted for less than 200 ms, 

where effective methods of feature 

extraction technique must be adopted, to 

fulfill this requirement. Table 4 shows the 

results. 

From the results, it can be seen that 

the first method produced the fastest 

processing time at 87.72 ms, with the lowest 

accuracy, at 74.82%. The second method 

achieved 86.17% accuracy with 119.45 ms 

processing time. The third method achieved 

the highest accuracy, with 96.1%, and the 

slowest processing time, at 188.44 ms. The 

results obtained in this study, indicated that 

method number three produced better 

performance with higher accuracy. Although 

the processing speed of this method is 

slower, it is below the 200 ms targeted 

processing speed.   

 

Table 4. Speed processing time and 

classification accuracy results for each 

method. 
Number 

of method 

Speed 

processing 

time (ms) 

Classification 

accuracy (%) 

 

1 

2 

3 

 

 

87.72 

119.45 

188.44 

 

74.82 

86.17 

96.10 

 

 The third method shows that the 

apparent crack and scratch were accurately 

detected, where the smallest size for hairline 

crack that can be detected is within 0.05 mm 

to 0.075 mm. The first and second method 

can only detect hairline crack with size not 

less than 0.075 mm. Detection of hairline 

crack is a difficult task because of its 

intensity that nearly matches with intensity 

of IC’s background. 

 



 

 

 

 

 

 

 All methods can convincingly detect 

apparent crack, and scratch defect. Although 

crack and scratch are two different kinds of 

defects, the manufacturer will reject scratch 

defect, as well as crack defect. 

 The execution time for each 

algorithm depends much on the used of 

central processing unit (CPU). In this study, 

all the algorithms were tested on CPU with 

Pentium 4, 2.66 GHz processor, and 256 

MB random access memory (RAM). 

 

 

4. Conclusion 
This paper has presented the performance of 

three inspection methods, utilising MLP 

neural network classifier, for crack 

detection. The third method is found to be 

the best in detecting both kind of crack and 

also scratch defect. This method takes less 

than 200 ms to compute, showing that it is 

not computationally demanding and can 

easily be implemented into a real system. 

Nevertheless, admittedly, the capability of 

the system to search for crack defect is very 

much dependent on the image processing 

stage. 
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