

Design of Crack Detection System Software for IC Package

Using Blob Analysis and Neural Network

Rosdiyana Samad
1
, Mohd Rizal Arshad∗

1
, Zahurin Samad

2

1
School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains

Malaysia, 14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia
2
School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia,

14300 Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

Abstract: In this research, three methods for the detection of crack defects on integrated circuit

(IC) packages are proposed. These methods use blob analysis technique in image processing

stage, and use multi-layered perceptron (MLP) neural network to classify the IC package. This

paper presents the various filters and operations employed in blob analysis. The simulation results

have shown, that a two-layer back-propagation neural network, which has a log-sigmoid transfer

function in the hidden and output layer, could be trained to classify the IC package image. An

early stopping technique was used in this study to provide benefits to the network performance in

terms of a decrease in over-fitting. It was found that the optimal number of hidden neurons for the

network 1,2 and 3 were 12, 12 and 10. The first method produced an accuracy of 74.82% with

87.72 ms processing time, while the second method utilizing the same classifier, achieved

86.17% accuracy with 119.45 ms processing time. The third method achieved 96.1% accuracy

with 188.44 ms processing speed. The results obtained in this study indicated that the third

method proceed better performance with higher accuracy and processing speed below 200 ms.

Key-words: IC package, Crack detection, Blob analysis, MLP neural network, Image processing

1. Introduction
In the semiconductor industry, machine

vision is extensively used in various stages

on the IC-device-manufacturing process [1].

The main automated inspection processes in

IC manufacturing include mask and reticle

inspection, in-process pattern inspection and

final chip inspection for quality control [2].

Among the many types of IC package defect

such as incomplete fill, void and off center;

crack is the biggest problem faced by the

manufacturer, especially the hairline crack.

The hairline crack is difficult to be detected

by human operator, and it can cause internal

damage in the IC chip.

 Crack usually occurs at the edge of

the IC chip. Hairline crack has a different

feature, which is a very tight breakage on

package surface that may not extend through

the package surface, and it is nearly

invisible. The dominant cracking

mechanism is moisture expansion due to

thermal processing acting on concentrations

of water vapor at the back of surface of the

die-paddle, and at the front surface of the

silicon die [3]. Fig 1(a) shows DIP (dual

inline package) IC package with a hairline

crack, while Fig 1(b) shows IC package with

an apparent crack.

Fig 1(a). Hairline crack

Fig 1(b). Apparent crack

 The objective of this project is to

design inspection system software that will

automatically detect cracks on IC packages.

The system uses the blob analysis technique

in image processing stage, and followed by

the back propagation neural network to

classify the features. This paper presents

three methods to detect crack on IC package,

with each method adopts various approach

in the image processing stage. Performance

comparison was then conducted to

determine the best method for the crack

detection system. In this project, the image

processing algorithm was developed using

the LabVIEW™ software, while the

network training was developed using

MATLAB® software.

2. Approach and methods
All the three crack detection methods

utilised a reference coordinate system,

image masking, image processing and neural

network technique. The procedure starts by

the image extraction, where images stored in

AVI format, are converted into individual

image frames, in bitmap files. A total of 624

images consisting 260 defects and 364 non-

defects images with 720x576 resolution

pixels were used in the experiment.

2.1 A reference coordinate system.
Before the image-processing technique is

applied, a reference coordinate system must

be built in order to develop an automatic

crack inspection system. A reference

coordinate system is utilised to locate the

reference feature in the inspection image, in

order to move the region of interest (ROI) in

relation to the object. The IC under

inspection usually appears shifted or rotated

within the image that need to be processed.

This is because the size of the IC is smaller

than the holding pocket. In this process, the

ROI must be shifted and rotated the same

way as the object.

 In order to develop a reference

coordinate system, we need to determine the

x and y position, and orientation for

coordinate reference of the object in the

image using the edge detection method. This

has been done by using LabVIEW™

function, i.e. IMAQ Coordinate System (2

Rect). This function is used to compute a

coordinate system based on the position of

an object in a search area of an image [4].

Two rectangular search areas have been

specified, each containing one separate,

straight boundary of the object and the

boundaries cannot be parallel, as shown in

Fig 3.

Fig 3. Rectangular search area

The first rectangular search area is the IC

leads, which represented x-axis, while

second search area is the vertical edge of IC

package, which is represented y-axis. Then,

the coordinate system axis direction is

chosen. The outputs of this function are the

origin, angle and axes direction of the

coordinate system. To build a coordinate

system for the first time, Find Reference

mode in IMAQ Coordinate System (2 Rect)

function is set. Next, the Update Reference

mode is set to update the coordinate system

in subsequent image. During this step,

IMAQ Coordinate System (2 rect) function

First rect search

Second rect search area

locates the features in the search area and

builds a new coordinate system based on the

new location of the features. After a

reference has been defined, the coordinate

systems moves in relation to the object and

the preprocessing automatically move the

ROI to the correct position in the new

coordinate system.

2.2 Removes IC leads, background,

text & notch.
In the next step, the IC leads, notch, text

images and background need to be removed,

so that the detection process of crack

become simpler. This was done by defining

the regions to process with an image mask.

Fig 4. Removes IC leads, background, text

& notch image.

In order to remove the IC leads and

the background, the ROI was selected on the

IC package, and the image was masked with

the region outside the ROI. While, for the

text image and notch, the ROI was selected

on the text image and notch, with inter-ROI

masking conducted. Fig 4 shows the masked

image.

2.3 Image processing
Development of a reference coordinate

system and image masking were conducted

for all three methods. Blob analysis

technique that contains a variety of

operations in image processing stage to

extract the crack features was applied across

the methods. Blob (binary large object)

analysis technique is used to extract the

crack from the image, and to find the

statistical information such as size of blob,

area and the perimeter that were measured

from the binary objects [4]. The image

processing operations for all three methods

are summarised in the Table 1. The

extracted crack object is termed ‘blob’, after

going through the image processing stage.

Then, these blobs were measured to

determine its features. All the measurements

are summarised in Table 1. These

measurements act as the input to the neural

network classifier as shown in the Table 2.

2.4 Neural Network Classifier
624 data were utilised for the image

processing stage, while another 332 data

were used for the neural network classifier

training. In order to make the data set for

neural network, these data were restructured

into matrices with 342 rows, and

subsequently, imported to the MATLAB
®

software. The MATLAB
®
 Neural Network

Toolbox was used to construct the artificial

neural network in this study.

 In this study, the data matrix used

for training the neural network was

normalised to the range 0-1. In the training

procedure, normalize data value was

randomly inputted to the network. An early

stopping technique was chosen in this study

to acquire an acceptable generalization

performance, which is used to prevent over

fitting of the data by the network [5].

 The collected data was divided into

4 subset. The first subset was the training

set, which was used for computing the

gradient and updating the network, weight

and biases [6]. It has 206 data, which

contains 96 defect image data, and 110 good

image-data. The second subset was the

validation set. The error on validation set

was monitored during the training process.

The third set was the test set. The test set

error was not used during the training, but it

was used to compare the different models.

There were 68 data for validation and test

set, which each set containing 36 good

image-data and 32 defects. The forth set was

the real data set, which is used to estimate

IC leads & background region

Notch

region

Text region

Table 1. Image processing techniques for method 1, 2 and 3.

Method 1 2 3

Image

enhancement

techniques

1. Brightness,

contrast, gamma

2. Horizontal Kirsch

filter

3. Low pass filter

1. Invert gray image

2. Laplacian filter

3. LUT: exponent

4. Gray morphology :

proper close

5. Sobel filter

1. IMAQ Count Objects

function

2. Find min pixel, extract &

change value to 0

3. Convert new pixel value

to image

4. Laplacian filter

5. Gray morphology : open

6. Gray morphology: erode

7. Median filter

Create binary

image

Threshold (threshold

values : 64-255)

Threshold (threshold

values : 51-255)

Automatic threshold :

Entropy

Improve a binary

image

1. IMAQ Remove

Particle function

2. Invert binary image

1. IMAQ Particle Filter

function

1. Invert binary image

2. IMAQ Particle Filter

function

3. Morphology : Dilate

(2x7)

4. IMAQ Particle Filter

function

5. Morphology : Dilate

(1x5)

Make a

particles/blobs

measurement

Parameters :

Blob area, number of

holes, hole’s area,

hole’s perimeter

Parameter:

Blob area

Parameters:

Coordinates (min x, min y,

max x, max y), width, chord

& axes (max intercept, mean

intercept perpendicular)

Table 2. Neural network input parameter for each method.

Number of

method
1 2 3

Input parameter

1. Blob area

2. Number of holes

3. Holes’ area

4. Holes perimeter

5. Blob area (from

IMAQ function)

Blobs area at :

1. right side package

2. left side package

3. upper side package

4. lower side package

1. Blobs area

2. min x

3. max x

4. min y

5. max y

6. width

7. max intercept

8. mean intercept

perpendicular

the network performance after training has

finished. This set contains 182 good image

data 100 defect image-data.

 All the training simulations were

performed with the same architecture. The

architecture of the neural network chosen for

this study was a multi-layer perceptron

(MLP) model, with single hidden layer, and

log-sigmoid transfer function in hidden and

output layers. The training algorithm that

was used in this study was Levenberg

Marquadt algorithm. The algorithm is

regarded as one of the fastest methods for

training moderate-sized back propagation

neural network [7]. It is a very efficient

when training networks, which have up to a

few hundred weights [8]. This algorithm has

also shown high performance in function

approximation problems.

For the network, the number of

output neuron was 1, while the number of

hidden neuron for each network is as shown

in Table 3. The determination of the optimal

number of hidden neurons was solved

through trial and error approach. The

network within 5 to 15 hidden neurons was

simulated in order to determine the optimal

number of hidden neurons. Although there

seems to be no upper limit in the neural

network using the early stopping algorithm,

it was not necessary to use too many hidden

neurons because it needs more computation

time and memory requirement [6]. The

network was trained for 30 iteration for each

neuron, and then, the average of mean

square error (MSE) was calculated. The

neural network with the best performance

was determined by minimum average of

MSE. The values of minimum average of

MSE are given in Table 3.

Table 3. The neural network simulation

results for method 1,2 & 3

Network
Input

neurons

Hidden

neurons

Min

average of

MSE

Method 1

Method 2

Method 3

5

5

8

12

12

10

0.1803

0.0701

0.0565

3. Results and discussion
The most important factors in classifying

crack inspection system are the

classification accuracy and processing

speed. Since the system must strive for real-

time processing capabilities, the algorithms

for all three methods need to be fast in

execution. In this project, the processing

speed was targeted for less than 200 ms,

where effective methods of feature

extraction technique must be adopted, to

fulfill this requirement. Table 4 shows the

results.

From the results, it can be seen that

the first method produced the fastest

processing time at 87.72 ms, with the lowest

accuracy, at 74.82%. The second method

achieved 86.17% accuracy with 119.45 ms

processing time. The third method achieved

the highest accuracy, with 96.1%, and the

slowest processing time, at 188.44 ms. The

results obtained in this study, indicated that

method number three produced better

performance with higher accuracy. Although

the processing speed of this method is

slower, it is below the 200 ms targeted

processing speed.

Table 4. Speed processing time and

classification accuracy results for each

method.
Number

of method

Speed

processing

time (ms)

Classification

accuracy (%)

1

2

3

87.72

119.45

188.44

74.82

86.17

96.10

 The third method shows that the

apparent crack and scratch were accurately

detected, where the smallest size for hairline

crack that can be detected is within 0.05 mm

to 0.075 mm. The first and second method

can only detect hairline crack with size not

less than 0.075 mm. Detection of hairline

crack is a difficult task because of its

intensity that nearly matches with intensity

of IC’s background.

 All methods can convincingly detect

apparent crack, and scratch defect. Although

crack and scratch are two different kinds of

defects, the manufacturer will reject scratch

defect, as well as crack defect.

 The execution time for each

algorithm depends much on the used of

central processing unit (CPU). In this study,

all the algorithms were tested on CPU with

Pentium 4, 2.66 GHz processor, and 256

MB random access memory (RAM).

4. Conclusion
This paper has presented the performance of

three inspection methods, utilising MLP

neural network classifier, for crack

detection. The third method is found to be

the best in detecting both kind of crack and

also scratch defect. This method takes less

than 200 ms to compute, showing that it is

not computationally demanding and can

easily be implemented into a real system.

Nevertheless, admittedly, the capability of

the system to search for crack defect is very

much dependent on the image processing

stage.

References:

[1] Kassim A A, Zhou H, Ranganath S,

Automatic IC Orientation Checks.

Machine Vision and Application, vol.

12, (2000), pp 107-112.

[2] Zhou H, KassimA A, Ranganath S, A

Fast Algorithm For Detecting Die

Extrusion Defects in IC Packages.

Machine Vision and Application, vol.11,

(1998),pp 37-41.

[3] Suhl, D., Thermally Induced IC Package

Cracking. IEEE Transaction on

Component, Hybrids and Manufacturing

Technology, 13 (4), (1990) p. 940-945.

[4] IMAQ Vision Concept Manual

National Instrument Corporation,

(2000), USA.
[5] The MathWorks, Matlab and Simulink

for Technical Computing. (2004)

Available: http://www.mathworks.com/

[6] Prechelt L, Automatic Early Stopping

Using Cross Validation: Quantifying

The Criteria. Neural Networks, Vol.

11,(1998), pp. 761-767.

[7] Sohn J.H, Smith R, Yoong E, Leis J,

Galvin G, Quantification of Odours

From Piggery Effluent Ponds Using An

Electronic Nose and Artificial Neural

Network. Biosystems Engineering,

Vol.4, no. 86, (2003), pp. 399-410.

[8] Hagan, M.T. & Menhaj, M. B., Training

Feedfoward Networks with The

Marquadt Algorithm. IEEE

Transactions On Neural Networks,

5(6), (1994) pp. 989-991

