Approach of Adaptive Control for a Class of Nonlinear Systems Using Fuzzy Approximator

HUGANG HAN, YOSHIO MORIOKA
Department of Management Information Systems
Prefectural University of Hiroshima
1-1-71 Ujina, Minami-ku, Hiroshima-city, Hiroshima 734-8558
JAPAN

Abstract:– Based on the Lyapunov synthesis approach and regarding the fuzzy system as approximator to approximate unknown functions in the system to be controlled, several adaptive control schemes have been developed during the last decade or more. Actually, (i) most of them just consider SISO systems (which can avoid the challenge of the coupling between control inputs); (ii) the system state have been involved in the fuzzy controller directly (in this way, there is no need to consider the problem of state observer). This paper develops a design methodology for a class of MIMO nonlinear systems with state observer. The overall adaptive scheme is shown to guarantee the tracking error, between the outputs of system and the desired values, to be asymptotically in decay, while maintaining all signals involved stable and forcing the estimated state to follow the real state rapidly.

1 Introduction

Over the last decade or more, beside the traditional adaptive control and sliding model control techniques, neural control, fuzzy control have been appearing strongly capable in a large amount of research and industrial applications. The motivation is often that they provide an alternative to the traditional modeling and design of control systems where system knowledge and dynamic models in the traditional sense are uncertain and time varying. Actually as shown in [1][2], no matter either fuzzy control or neural control, the system, rather than “control”, is used as the parameterized approximator that is finally expressed as a series of radial function (RBF) expansion due to its excellent approximation properties. A key element of this success has been the merger of adaptive system theory with approximation theory [3], where the unknown plants are approximated by parameterized approximators. This is why a large amount of research on adaptive control involving fuzzy approximator has appeared in this research field since the early 1990’s. On the other hand, most of adaptive control systems, where fuzzy approximator, is used proposed so far involve the system state directly, and which is sometimes unavailable especially in a nonlinear system. Although some encouraging challenges have been carried out using the concept of fuzzy state observer [7]-[8], there is still not a clear clue that shows the connection between the real control state, observer, fuzzy approximator, and the system controller. This greatly limits the flexibility of fuzzy control system to be applied to a practical system. Another concern over the proposed adaptive control systems is that they mostly pay attention on the single-input/single-out (SISO) systems, and the system design for which can not be extended to a multiple-inputs/multiple-outputs (MIMO) system straightforwardly. Therefore, the system design should be built based on MIMO system in terms of system applicability.

In this paper, our goal is to show an approach of adaptive control for a class of MIMO nonlinear systems with disturbance, in which state observer is proposed instead of using the unavailable system state. Considering the part closely related with the state observer as a subsystem, the whole system behavior, thus, becomes a standard singularly perturbed form [9]-[11], in which the gap between the real state and its corresponding value from the state observer decays to order $O(\epsilon)$ in a very fast speed by choosing an arbitrarily small constant ϵ. Also until then, the gap is treated as part of system disturbance. To deal with the reconstruction error regarding the fuzzy approximator, we adopt a switching function with an alterable coefficient, which is tuned by an adaptive law based on the tracking error, in stead of the upper bound assumptions as well as treating the disturbance. The adaptive law to adjust all parameters will be developed based on the Lyapunov synthesis approach. It is shown that the proposed fuzzy controller guarantees the tracking error, between the output of the considered system and the desired value, to be shrunken to zero, while maintaining all signals involved in the system stable, and forcing the estimated state from the state observer to follow the real state rapidly.

1 A vector function $f(t, \epsilon) \in R^n$ is said to be $O(\epsilon)$ over an interval $[t_1, t_2]$ if there exist positive constants k and ϵ^* such that

$$||f(t, \epsilon)|| \leq ke, \ \ \ \epsilon \in [0, \epsilon^*], \ \ t \in [t_1, t_2]$$

where $|| \cdot ||$ is the Euclidean norm [12].
2 Problem Statement

Consider the following MIMO continuous-time nonlinear system:

\[x^{(n)} = \mathcal{F}(X) + \mathcal{B}(X)u + \mathcal{D} \quad (1) \]

where \(X = [X_1^T, X_2^T, \ldots, X_n^T] \in \mathbb{R}^{m \times n} \), with \(X_i = [x_{i,1}, x_{i,2}, \ldots, x_{i,n_i}] \) being the state vector of the \(i \)th subsystem, \(\mathcal{F} = [f_1, f_2, \ldots, f_m]^T \in \mathbb{R}^m \) is a vector function, \(\mathcal{B} = [b_{i,j}]_{i \times m} \) is the control gain matrix, both \(\mathcal{F} \) and \(\mathcal{B} \) are unknown nonlinear functions of the state system vector. \(u = [u_1, u_2, \ldots, u_m]^T \) is the control vector, \(x^{(n)} = [x_{1}^{(n_1)}, x_{2}^{(n_2)}, \ldots, x_{m}^{(n_m)}]^T \in \mathbb{R}^m \) is the uncertainty vector. \(\mathcal{D} = [d_1, d_2, \ldots, d_m]^T \in \mathbb{R}^m \) is an uncertainty vector.

Let \(\bar{x} = [\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_m]^T \in \mathbb{R}^m \) be desired trajectory vector and define the tracking error vector, \(\tilde{x} = x - x_d \quad (2) \)

where \(x = [x_1, x_2, \ldots, x_m]^T \in \mathbb{R}^m \). The problem we consider in this paper is to design a controller vector \(u \) for (4) which ensures the tracking error vector (2) to be uniformly ultimately bounded, also the ultimate bound should be made arbitrarily small by choosing appropriately control parameters, while maintaining all signals in the system uniformly bounded.

Here, we rewrite system (1) in a more general form as

\[x_i^{(n_i)} = f_i(X) + \sum_{j=1}^{m} b_{i,j}(X)u_j + d_i \quad (3) \]

where \(i = 1, 2, \ldots, m \). (3) is referred to as an \(i \)th subsystem, which is corresponding to the independent coordinate \(x_i \). Also, \(i \)th subsystem (3) can be rewritten in state-space representation,

\[
\begin{aligned}
\dot{x}_i &= A_i x_i + B_i \left(\sum_{j=1}^{m} b_{i,j}(X)u_j + d_i \right) \\
y_i &= C_i^T x_i
\end{aligned} \quad (4)
\]

where,

\[
A_i = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{bmatrix} \in \mathbb{R}^{n_i \times n_i}
\]

\[B_i = [0 \ 0 \ \cdots \ 0 \ 1] \in \mathbb{R}^{n_i} \]

\[C_i = [1 \ 0 \ \cdots \ 0 \ 0] \in \mathbb{R}^{n_i} \]

and \(\dot{X}_i = [x_{i,1}, \dot{x}_{1,i}, x_{i,2}, \ldots, x_{i,n_i}] = [x_{i,1}, \dot{x}_{1,i}, \ldots, x_{i,n_i}]^{(n_{i-1})} \) where not all \(x_{i,l} \) \((l = 1, 2, \ldots, n_i)\) are assumed to be available for measurement in this paper. In the remainder of this paper, the ranges for subscript \(i \), and \(l \) are \(1 \sim m \), and \(1 \sim n_i \), respectively, unless it specifies.

Thus, for \(i \)th subsystem (3) the problem becomes developing \(u_i \) that ensures the tracking error,

\[\tilde{x}_i = y_i - x_{di} \quad (5) \]

to be uniformly ultimately bounded and the whole system’s stability.

The nonlinear functions \(f_i \) and \(b_{i,j} \) in (3) are unknown, so before developing our control system we have to solve the problem of approximating \(f_i \) and \(b_{i,j} \). In the following section, it will be shown that using fuzzy IF-THEN rules, the unknown functions \(f_i \) and \(b_{i,j} \) can be approximated by some parameterized fuzzy approximators.

To proceed with our development, we state our assumption on the system.

\textbf{Assumption} : The control gain \(b_{i,j} \) is finite, nonzero, and of known sign for all \(X \); without loss of generality this sign can be taken as positive. The functions \(f_i/(b_{i,j}) \), and \(d_i \) are bounded.

It should be noted that here in this paper, we just suppose that the boundedness of \(f_i/(b_{i,j}) \), and \(d_i \) is existent, and its each real boundary does not need to be known in the development of control system.

3 Control System Approach

3.1 Fuzzy Approximator

The fuzzy model addresses the imprecision of the input and output variables directly by defining them with fuzzy sets in the form of membership functions. The basic configuration of the fuzzy model includes a fuzzy rules base, which consists of a collection of IF-THEN fuzzy rules. Now, we consider a fuzzy model with singleton consequent, product inference, Gaussian membership function in the antecedent, and central average defuzzifier, hence, such a fuzzy model can be written as

\[\mathcal{F}(Z) = W^T \cdot G(Z) \quad (6) \]

where \(Z = [z_1, z_2, \ldots, z_n] \), \(W = [w_1, w_2, \ldots, w_N] \) with \(N \) being the number of fuzzy rules; \(G_i(Z) = [g_{i,1}(Z), g_{i,2}(Z), \ldots, g_{i,N}(Z)] \) with \(g_{ij}(Z) = \frac{\prod_{i=1}^{m} \mu_{A_j}(z_i)}{\sum_{i=1}^{m} \prod_{i=1}^{m} \mu_{A_i}(z_i)} \) where \(\mu_{A_j}(z_i) \) is a Gaussian membership function, defined by

\[\mu_{A_j}(z_i) = \exp \left[-\frac{(z_i - \xi_j)^2}{\sigma_j^2} \right] \quad (7) \]

where \(\xi_j \) indicates the position, and \(\sigma_j^2 \) indicates the variance of the membership function.

We now can show an important property of the fuzzy system above. As shown by Wang et al [1], the fuzzy system has the same pattern as a neural network. Exactly as a neural network, which has powerful abilities of learning and approximation, a fuzzy system with the Gaussian membership is capable of uniformly approximating any well-defined nonlinear function over a compact set \(U \) to any degree of accuracy. The following theorem [2] theoretically supports this claim.

\textbf{Theorem 1} For any given real continuous function \(f \) on the compact set \(U \in \mathbb{R}^n \) and arbitrary \(\epsilon^* \), there
exists an optimal fuzzy system expansion $\mathcal{F}^*(Z) = W^* \cdot G(Z)$ such that

$$\sup_{x \in U} |f - \mathcal{F}^*(Z)| \leq \varepsilon^*$$ (8)

This theorem states that the fuzzy system (6) is a universal approximator on a compact set.

3.2 State Observer

To deal with the unknown functions such as $f_i(x)$, we will employ the fuzzy approximator above to estimate them. In the fuzzy approximator, as the input variables the system state is often used. However, as mentioned previously, not all x_i,\dot{x}_i in \mathcal{X}_i are assumed to be available for measurement in this paper, therefore, first of all we have to design a state observer. We estimate the state x_i,\dot{x}_i using the observer

$$\dot{\hat{x}}_{i,l} = x_{i,l+1} + \frac{\alpha_{i,l}}{\epsilon}(y_i - \hat{x}_{i,l}), \quad l = 1, \ldots, n_i - 1$$

$$\dot{\hat{x}}_{i,n_i} = \frac{\alpha_{i,n_i}}{\epsilon}(y_i - \hat{x}_{i,l})$$

where ϵ is a positive parameter to be specified. The positive constant $\alpha_{i,l}$ is chosen such that the roots of

$$s^{n_i} + \alpha_{i,1}s^{n_i-1} + \cdots + \alpha_{i,n_i-1}s + \alpha_{i,n_i} = 0$$ (10)

have negative real parts. Like (4), the state observer (9) can be rewritten in state-space representation,

$$\dot{\hat{\mathcal{X}}}_i = A_i\hat{\mathcal{X}}_i + D_i(e)L_i C_i^T(\mathcal{X}_i - \hat{\mathcal{X}}_i)$$ (11)

where,

$$D_i(e) = \begin{bmatrix} \frac{1}{\epsilon} & \frac{1}{\epsilon} & \cdots & \frac{1}{\epsilon} \\ & & & \end{bmatrix} \in \mathbb{R}^{n_i \times n_i},$$

$$L_i^T = [\alpha_{i,1}, \alpha_{i,2}, \ldots, \alpha_{i,n_i}] \in \mathbb{R}^{n_i},$$

$$\hat{\mathcal{X}}_i = [\hat{x}_{i,1}, \hat{x}_{i,2}, \ldots, \hat{x}_{i,n_i}] = [\hat{x}_{i,1}, \hat{x}_{i,2}, \ldots, \hat{x}_{i,n_i-1}].$$

Now, we define a matrix $N_i(\epsilon) \in \mathbb{R}^{n_i \times n_i}$ as follows.

$$N_i(\epsilon) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ & \epsilon & \cdots & \epsilon \\ & & \ddots & \epsilon \\ & & & \epsilon^{n_i-1} \end{bmatrix}.$$ (12)

Let

$$E_i = N_i^{-1}(\epsilon) (\mathcal{X}_i - \hat{\mathcal{X}}_i)$$ (14)

From (4), (11), (12), and (14), it follows that

$$\dot{E}_i = \frac{1}{\epsilon}(A_i - L_i C_i ^T)E_i + B_i \left(\sum_{j=1}^{m} b_{i,j}(\mathcal{X})u_j + d_i \right)$$ (15)

where the characteristic equation of matrix $(A_i - L_i C_i ^T)$ is (10). Including the state observer, at this stage the whole system behavior is dominated by (4) and (15). This is the standard singularly perturbed form. If attention is paid to term $\frac{1}{\epsilon}$ in (15), we can easily see that the evolutions of \mathcal{X}_i, and E_i do have a absolutely different transient speed, in which (15) is called the fast model whereas (4) is called the slow model [10]. In the following subsection, we will take advantage of the evolutions’ different transient speeds to develop the fuzzy control system.

3.3 Structure of Controller

In this paper, we adopt the variable structure theory to construct our adaptive fuzzy control system. The sliding mode hyperplane is firstly defined as

$$s_i = \left(\frac{d}{dt} + \lambda \right) x_i^{-1} \hat{x}_i$$ with $\lambda > 0$ (16)

where λ defines the bandwidth of the error dynamics of the system. The equation defines a time-varying hyperplane in \mathbb{R}^{n_i} on which the tracking error \hat{x}_i decays exponentially to zero, so that perfect tracking can be asymptotically obtained by maintaining this condition. In this case the control objective becomes the design of a controller that ensures $\dot{s}_i = 0$. The time derivative of the error metric can be written as

$$\dot{s}_i = \sum_{j=1}^{m} b_{i,j}u_j + d_i + f_i$$

$$-x_i^{-1} \hat{x}_i + \Lambda_i^T \hat{\mathcal{X}}_i$$ (17)

where $\Lambda_i^T = [0, \lambda x_i^{-1}, (n_i - 1)\lambda x_i^{-2}, \ldots, (n_i - 1)^2]$, $\hat{x}_i = \mathcal{X}_i - \hat{\mathcal{X}}_i$, $\mathcal{X}_i = [x_i, \dot{x}_i, \ldots, x_i^{(n_i-1)}]$. Referring to system (3), it naturally suggests that when $b_{i,j}$ and f_i are known, a controller of the form

$$u_i = b_i^T \left[-k_d s_i - f_i + a_i \
\sum_{j=1}^{m} b_{i,j} u_j - f_i \cdot \text{sgn}(s_i) \right]$$ (18)

where $k_d > 0$, $|d_i| \leq d_i^*$ with d_i^* being the boundary of d_i, $a_i(s) = x_i^{(n_i)} - \Lambda_i^T \hat{\mathcal{X}}_i$, leads to $\dot{s}_i = -k_d s_i$, and hence, $\hat{x}_i \to 0$ as $t \to \infty$. However, the problem is how u_i can be determined when $b_{i,j}$ and f_i, as well as the upper boundary d_i^* for d_i, are unknown. What is more, the state \mathcal{X} and the sliding mode s_i involving \mathcal{X}_i can not be used in the controller directly due to the problem with \mathcal{X}_i’s measurement.

Using the estimated state $\hat{\mathcal{X}}_i$ instead of \mathcal{X}_i, we define
proximators of the unknown functions g with small positive values, respectively. According to Theorem 1, there are some reconstruction errors ε_g in a control system, the boundedness for the control input, which can be confirmed in (31) and later development, is a basic requirement. Therefore, like (26) and (27), here it is reasonable to assume that ε_{hij} is bounded by a constant ε^*_{qij}:

$$|\varepsilon_{qij}| \leq \varepsilon^*_{qij} \tag{29}$$

And, one fact is that, according to Assumption in section 2, the time derivative of g_i, \dot{g}_i, is supposed to be bounded in this paper. Therefore, there is a d^*_{gi} such that

$$\frac{d}{dt}g_i \leq d^*_{gi} \tag{30}$$

We also should note that the values of ε^*_{gi}, ε^*_{hij}, ε^*_{qij}, and d^*_{gi} do not need to be specified in this paper.

However, the optimal vectors W^*_{gi}, W^*_{hi}, and W^*_{qij} in the optimal fuzzy approximators are also unknown, so their estimates, denoted $\hat{g}_i(\hat{x}) = \hat{W}^*_{gi}G_{gi}(\hat{x})$, $\hat{h}_i(\hat{x}) = \hat{W}^*_{hi}G_{hi}(\hat{x})$, and $\hat{q}_{ij}(\hat{x}) = \hat{W}^*_{qij}G_{qij}(\hat{x})$, are adopted.

Inspired by the control structure in (18), our fuzzy controller is now described as

$$u_i = u_{fda} + u_{fzi} + u_{sdi} \tag{31}$$

where u_{fda}, u_{fzi}, and u_{sdi} are an error’s feedback component, fuzzy component and sliding component, respectively. The error’s feedback component u_{fda}, concretely expressed by,

$$u_{fda} = -kd\hat{s}_i - \frac{1}{2}d^*_{gij}\hat{s}_i, \quad kd > 0 \tag{32}$$

is a kind of feedback of tracking error ($\hat{x}_i - x_{di}$), in which the coefficient d^*_{gij} is the estimate of d^*_{gij} in (30), and is tuned by,

$$\dot{d}^*_{gij} = \frac{1}{2}\gamma_d\hat{s}^2_{ij}, \quad \gamma_d > 0 \tag{33}$$

The fuzzy component u_{fzi}, expressed by,

$$u_{fzi} = -\hat{h}_i + \hat{g}_i\hat{a}_i - \sum_{j=1, j\neq i}^{m} \hat{q}_{ij}\hat{u}_j$$

$$- (\varepsilon_{hi} + \varepsilon_{xi}\hat{a}_i + \sum_{j=1, j\neq i}^{m} \varepsilon_{qij}\hat{u}_j) \text{sgn}(\hat{s}_i) \tag{34}$$

will cover the unknown functions $g_i, h_i, q_{i,j}$, and attempt to compensate the estimating errors. At the same time, the adaptive laws are synthesized by

$$\dot{W}_{hi} = \Gamma_{hi}G_{hi}(\hat{x})\hat{s}_i \tag{35}$$

$$\dot{W}_{gi} = -\hat{g}_iG_{gi}(\hat{x})\hat{s}_i \tag{36}$$

$$\dot{W}_{qij} = \Gamma_{qij}G_{qij}(\hat{x})\hat{u}_j\hat{s}_i \tag{37}$$

$$\dot{\varepsilon}_{hi} = \gamma_{hi}\varepsilon_{hi} \tag{38}$$

$$\dot{\varepsilon}_{gi} = \gamma_{gi}\varepsilon_{gi}\hat{s}_i \tag{39}$$

$$\dot{\varepsilon}_{qij} = \gamma_{qij}\varepsilon_{qij}\hat{s}_i \tag{40}$$

where \hat{W}_i and $\hat{\varepsilon}_i$ are the estimates of W^*_{hi}, ε^*_{hi}, respectively; Γ_i and γ_i are some appropriate symmetric
positive definite matrices, or positive constants which determine the rates of adaptation.

The sliding component u_{slt}, expressed by,

$$u_{slt} = -d_{egi} \text{sgn}(\hat{s}_i)$$ \hspace{1cm} (41)

copes with the disturbance d_i in (1). And the coefficient d_{egi}, which is the estimate of $(\dot{d}_{ei} \cdot g_i^*)$, is tuned by an adaptive law as follows:

$$\dot{\hat{d}}_{egi} = \gamma_{d_{egi}} \hat{s}_i$$ \hspace{1cm} (42)

where $\gamma_{d_{egi}}$ is the rate of adaptation as well.

3.4 Analysis of Stability

Now, consider the following Lyapunov function candidate,

$$V_1 = \frac{1}{2} \left(g_i \hat{s}_i^2 + \frac{1}{\gamma_{d_{gri}}} d_{gi}^2 + \frac{1}{\gamma_{hi}} e_{hi}^2 + \frac{1}{\gamma_{d_{egi}}} \hat{d}_{egi}^2 \right) + \sum_{j=1}^{m} \tilde{W}_{qij}^T \Gamma_{q}^{-1} \tilde{W}_{qij} + \sum_{j=1}^{m} \frac{1}{\gamma_{qij}} e_{qij}^2$$

$$+ \tilde{W}_{hi}^T \Gamma_{h}^{-1} \tilde{W}_{hi} + \tilde{W}_{gi}^T \Gamma_{g}^{-1} \tilde{W}_{gi} \right)$$ \hspace{1cm} (43)

where,

$$\tilde{d}_{gi} = d_{gi} - \hat{d}_{gi}$$ \hspace{1cm} (44)

$$\tilde{e}_{gi} = e_{gi} - \hat{e}_{gi}$$ \hspace{1cm} (45)

$$\tilde{e}_{hi} = e_{hi} - \hat{e}_{hi}$$ \hspace{1cm} (46)

$$\tilde{d}_{egi} = d_{egi} - \hat{d}_{egi}$$ \hspace{1cm} (47)

$$\tilde{W}_{qij} = W_{qij}^* - \tilde{W}_{qij}$$ \hspace{1cm} (48)

$$\tilde{e}_{qij} = e_{qij} - \hat{e}_{qij}$$ \hspace{1cm} (49)

$$\tilde{W}_{hi} = W_{hi}^* - \tilde{W}_{hi}$$ \hspace{1cm} (50)

$$\tilde{W}_{gi} = W_{gi}^* - \tilde{W}_{gi}$$ \hspace{1cm} (51)

Using expressions (44-51), and adaptive law (33), (35-40), and (42) into the time derivative of the Lyapunov function candidate follows,

$$\dot{V}_1 < -k_s \hat{s}_i^2$$ \hspace{1cm} (52)

Therefore, all signals in (43), which also are signals involved in the system, are bounded, and $\dot{s}_i \rightarrow 0$, as $t \rightarrow \infty$, which also means $(\hat{x}_i - x_{di}) \rightarrow 0$, as $t \rightarrow \infty$. However, our goal is to drive, not the estimated state \hat{x}_i, but the real state x_i to follow the desired value. To this end, one way, the direct way, is to show x_i surely is following x_{di}, and another way, the indirect way, is to show that \dot{x}_i is equal to x_i, the error between them decays to almost zero at a very fast speed. Here, we take the indirect approach. Let us pay attention to the fast model (15). Consider the following Lyapunov function candidate,

$$V_2 = E_i^T P_t E_i$$ \hspace{1cm} (53)

where $P_t^T = P_t > 0$ is the solution of the Lyapunove equation,

$$P_t (A_t - L_t C_t^T) + (A_t - L_t C_t^T)^T P_t = -I_t$$ \hspace{1cm} (54)

Based on the analysis above, the boundedness of controller (31) is guaranteed. Therefore, inequality

$$|f_i + b_i u_i + d_i| \leq k_i$$ \hspace{1cm} (55)

is satisfied for some $k_i \geq 0$ subject to Assumption stipulated in section 2. Substituting (54) into the time derivative of V_2, it follows that

$$\dot{V}_2 \leq -\frac{1}{\epsilon} ||E_i||^2 - 2k_i |P_t B_i| ||E_i||$$

$$\leq -\frac{1}{\epsilon} V_2, \quad \text{if} \quad V_2 \geq \epsilon^2 \beta_i$$ \hspace{1cm} (56)

where $\gamma_i = \frac{1}{2\lambda_{max}(P_i)}$ and $\beta_i = 16||P_t B_i||^2 k^2 \lambda_{max}(P_i)$. This implies,

$$V_2 \leq V_2(0) e^{-\frac{2\epsilon^2}{\beta_i}}$$ \hspace{1cm} (57)

We can get that there exists

$$T_i = \frac{\epsilon}{\gamma_i} \ln \left(\frac{V_2(0)}{\epsilon^2 \beta_i} \right)$$ \hspace{1cm} (58)

such that for $t \geq T_i$, V_2 satisfies

$$V_2 \leq \epsilon^2 \beta_i$$ \hspace{1cm} (59)

From (53), we have $||E_i||^2 \leq \frac{1}{\lambda_{min}(P_t)} V_2$. Therefore, it follows that

$$||E_i|| \leq \mu_i \epsilon, \quad \text{if} \quad t \geq T_i$$ \hspace{1cm} (60)

where $\mu_i = \frac{1}{\lambda_{min}(P_t)}$. Therefore, the scaling estimation error decays to the order $O(\epsilon)$. Since ϵ can be chosen arbitrarily small, we can make T_i in (58) arbitrarily small as well. Consequently, considering the relation in (14), we conclude the estimated state \hat{X}_i closely follows its real state X_i at a very fast speed, i.e., $\hat{X}_i \rightarrow X_i$. Furthermore, we have $x_i \rightarrow x_{di}$.

4 Simulation Example

In order to verify the proposed design procedure, we apply the approach developed in previous section to the Duffing forced-oscillation system:

$$\ddot{x}(t) = -a \dot{x}(t) - b x^3(t) + c \cos(t) + u.$$ \hspace{1cm} (61)

Its behavior is chaotic in unforced case, i.e., $u = 0$. The unforced trajectory of the system is shown in Fig.1 in phase plane (x, \dot{x}) for $x(0) = \dot{x}(0) = 2, a = 0.11, b = 1, c = 12$, and time period $[0, 60]$. Now, we use the control approach proposed in this paper to force the state $x(t)$ to follow a desired trajectory $x^*(t) = \sin(t)$. In the phase plane, the desired trajectory is a unit circle: $x^2 + \dot{x}^2 = 1$. In this simulation, we choose the initial membership functions as shown in Fig.2 for both $x(t)$ and $\dot{x}(t)$.

Clearly, the two input variables lead to $7 \times 7 = 49$ fuzzy rules at most as follows:

$$R_j : IF \ x \ is \ A^1_j, \ \dot{x} \ is \ A^2_j \ THEN \ f \ is \ w_j,$$
To verify the control scheme, suppose that we have no knowledge regarding the function \(f = -a\dot{x}(t) - bx^3(t) + c\cos(t) \), so the initial consequents \(w_j \) are selected randomly. Control law \(u \) in (31) was used. The error’s feedback component \(u_{fd}(t) \) is synthesized by (32), and (33) where \(k_d = 1, \gamma_d = 0.2 \). The fuzzy component \(u_{fz}(t) \) is synthesized by (34), (35), and (38) where \(\Gamma_h = 0.1I \) with \(I \) being an appropriate identity matrix, \(\gamma_h = 0.2 \). Further, the sliding component is determined by (41), and (42) where \(\gamma_{d_\phi} = 0.2 \). In addition, we take the values that \(\lambda = \alpha_1 = 1, \alpha_2 = 0.1, \varepsilon = 0.01, \Gamma_y = 0.1I \) and \(\gamma_g = 0.2 \) in this simulation.

Simulation result is shown in Figs.3-6. The closed-loop trajectories are depicted with the initial conditions \(x(0) = \dot{x}(0) = 2 \) in Fig.3. The control input \(u(t) \) is shown in Fig.4. Further, the estimated errors of \(\hat{x}(t) = x(t) \), and \(\hat{x}(t) - \hat{x}(t) \) are displayed in Fig.5, and Fig.6, respectively. We see that our control approach can handle well a system with some unknown time-variable facts such as \(\cos(t) \) to track a time-varying desired trajectory.

We also should note that, when the tracking error \(\hat{x}(t) \) enters around the sliding surface, sign function \(\text{sgn}(\hat{s}) \) begins working frequently so that such a control law (31) leads to control chattering. Chattering is undesirable in practice because it involves high control activity, and further may excite unmodeled high frequency plant dynamics. This problem can be eliminated by adopting a saturation function,

\[
\text{sat}(s/\phi) = \begin{cases}
 1 & s/\phi \geq 1, \\
 -1 & -1 \leq s/\phi \leq 1, \\
 0 & \text{otherwise}
\end{cases}
\]

where \(\phi \) is a little constant instead of \(\text{sgn}(s) \), and a smoothed sliding mode \(s_\phi = s - \phi \cdot \text{sat}(s/\phi) \) instead of \(s(t) \) [6]. What’s more, the system stability analysis is almost same with what appeared in this paper. Actually, the results given above were performed with \(s_\phi \), and \(\text{sat}(s/\phi) \) where \(\phi = 0.01 \).

5 CONCLUSION

In this paper, we proposed an adaptive controller for a class of nonlinear systems with state observer. The results achieved in this paper can be summarized in a theorem as follows.

Theorem 2 If the plant (1), subject to Assumption in section 2, is controlled by (31-32), (34), and (41) with the adaptive law (33), (35-40), (42), and the state observer (9), then all signals involved in the control system will remain bounded, and the tracking error will asymptotically shrink to zero, at same time, the estimated state follows its real state.
Figure 5: Estimated error ($\hat{x}(t) - x(t)$).

Figure 6: Estimated error ($\dot{x}(t) - \dot{x}(t)$).

References:

