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Abstract: Tide tables are the method of choice for water level predictions in most coastal regions.  In the United States, the 
National Ocean Service (NOS) uses harmonic analysis and time series of previous water levels to compute tide tables.  This 
method is adequate for most locations along the US coast.  However, for many locations along the coast of the Gulf of 
Mexico, tide tables do not meet NOS criteria.  Wind forcing has been recognized as the main variable not included in 
harmonic analysis [1].  The performance of the tide charts is particularly poor in shallow embayments along the coast of 
Texas.  Recent research at Texas A&M University-Corpus Christi has shown that Artificial Neural Network (ANN) models 
including input variables such as previous water levels, tidal forecasts, wind speed, wind direction, wind forecasts and 
barometric pressure can greatly improve water level prediction at several coastal locations including open coast and deep 
embayment stations.  In this paper, the ANN modeling technique was applied for the first time to a shallow embayment, the 
station of Rockport, Texas located near Corpus Christi, Texas.  The ANN performance was compared against the NOS tide 
charts and the persistence model for the years 1997 to 2001.  The Rockport station was ideal because it is located in a 
shallow embayment along the Texas coast and there is an 11-year historical record of water levels and meteorological data 
in the Texas Coastal Ocean Observation Network (TCOON) database.  The performance of the Artificial Neural Network 
model was measured using NOS criteria such as Central Frequency (CF), Maximum Duration of Positive Outliers (MDPO), 
and Maximum Duration of Negative Outliers (MDNO).  The ANN model compared favorably to existing models using 
these criteria and is the best predictor of future water levels tested.  Partial support for this work is provided by NASA 
award # NCC5-517. 
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1 Introduction Aransas Bay, a particularly shallow embayment (See Fig. 

2).   
 In recent years the importance of marine activities has 

grown steadily.  With the growth of the economy the 
shipping industry has seen its activity increase leading to a 
push towards larger deeper draft vessels.  The operation of 
such vessels in ports where shallow water is a concern 
would greatly benefit from accurate advanced water level 
related information.  The coastal communities at large 
would greatly benefit from such forecasts as well, 
especially during tropical storm events.  A comparison of 
measured water levels with tidal forecasts is presented in 
Fig. 1.  The Division of Nearshore Research (DNR) at 
Texas A&M University–Corpus Christi has taken on two 
main tasks:  the design of a model that will provide more 
accurate results than the currently relied upon tide charts, 
and to make the results from this model accessible to the 
marine community.               

 
Fig. 1.  Comparison of the Rockport Tide Chart predictions (gray) and 
the actual water level measurements (black) in 1998.  (Notice the 
discrepancy between the predicted and actual values.) 
 
Aransas Bay, a particularly shallow embayment (See Fig. 
2).  
Several approaches have been considered to solve the task 
of providing a more accurate model.  One approach 
considered was Multivariate Statistical Analysis, which 
focuses on linear regression models coupled with harmonic 
analysis of the astronomical forces causing the tides [3].  
This paper is focused on the other main technique 
investigated: Artificial Neural Networks.  To date, the 

The area of interest for this work is Rockport, TX.  
Rockport is a coastal community of 7385 people, and at its 
maximum elevation is only two meters (approximately five  
feet) in height [2].  In general, all of the tourist activities, 
restaurants, and entertainment facilities are located near the 
water, no more than a few inches above the water level in 

  



Artificial Neural Network models have provided more 
accurate results for open coast and deeper embayments, but 
had not been tested for such shallow embayment.    The 
Artificial Neural Networks took into account the 
astronomical tide information in addition to time series of 
measured water levels, wind speeds and wind directions 
and barometric pressures.        

The input data had been queried from data compiled 
for more than 10 years in the real-time database of the  
 
 
 

     

Fig. 2.  Rockport, TX. The city is located 35 miles from Corpus Christi, 
one of the nations most active ports. 
 
TCOON [4] (See Figs. 3,4).  The models were trained over 
large data sets, and all the results were then compared 
using the National Ocean Service skill assessment 
statistics, with an emphasis on the Central Frequency.  
Central Frequency is the ratio of predictions that are within 
plus or minus X cm from the actual measurement.  For 
NOS to consider a model operational, its Central 
Frequency of 15 cm must be equal or greater than 90%.  
The tide charts (the current method of water level 
predictions) for the entire coast of Texas did not pass the 
standard (see Fig. 5).  The deficiency of the tide charts and 
the reason for the deficiency are known by the National 
Oceanic and Atmospheric Administration (NOAA).  As the 
agency has  stated,  “…presently published predictions do 
not meet working standards” when assessing the 
performance of the tide charts for Aransas Pass, Texas 
[5,6]. 

The first test for a new model to be accepted is that 
it must improve upon the performance of a benchmark 
model called the persisted difference or “Persistence” 
model.  The persistence model relies on the inference that a 
presently observed distance between the tide chart 
prediction and the actual water level will persist into the 
future.  The Persistence model basically takes an offset and 

applies it to the tide charts for the prediction.  It is simple 
and yet considerably more effective than the tide charts in 
in predicting water levels along the Texas Gulf coast.   

Once this benchmark was incorporated, the 
objective shifted to the development and assessment of an 
ANN model applied to various locations along the Gulf 
Coast and within shallow estuaries and embayments. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  The Texas Coastal Ocean Observation Network  (TCOON).  
Over 50 stations relay real-time environmental and oceanographic data 
for observations of the Gulf Coast. 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  A typical TCOON station.  Each station records a variety of time 
series data then transmits the data to the TCOON database 
predicting water levels along the Texas Gulf coast.   
 
2 Site Description, Methodology and Model 
 
Rockport, Texas, the central area of interest for this paper, 
is most directly affected by Aransas Bay, which is linked to 
the Gulf of Mexico through Aransas Pass (See Fig. 2).  The 
barrier island protecting Rockport from the effects of the 
Gulf is called San Jose Island, which is also connected to 
Matagorda Island.  The shallow waters between the barrier 
islands and the Rockport coastline lead to a delay between 

  



the observed water level trends in the Gulf and in 
Rockport.  In general, what is observed in the Gulf takes a 
few hours to register in the affected bays.  Most of the 
directly observed water level changes had been correlated 
with strong winds and frontal passages [7,5,6].   This made 
it important to test the inclusion of winds as part of the 
input to the ANN model, but many other factors must also 
be considered.     The presently used ANN model 
 

                          
 

Fig. 5.  Comparison of six coastal stations and their respective RMSE 
and Central Frequency for the tide charts.  The NOS standard is 90%, 
and the best value is 89.1% 
 
includes previous water levels measurements, tidal 
forecasts, previous wind speed and wind direction 
measurements, wind forecasts, and barometric pressure.  A 
schematic of the model is presented in Fig. 6.  Although a 
plethora of other time series data is available, it was shown 
by way of factor analysis that only a few components were 
actually necessary to model the water level changes [3].  
Five years of hourly data between 1997 and 2001 were 
chosen to train and test the ANN model.  Less than 2% of 
the data was missing for each of the data series (See table 
1) used in this work except for the Bob Hall Pier 1999 data 
set where 2.2% of the wind data was missing.  The gaps 
were filled by linear interpolation within the gaps for wind 
data and for water level gaps, the tidal component of the  
water level was first subtracted, then the gap was filled by 
interpolation, and finally the tidal component was added 
back in. All water level measurements were referenced to 
mean low water levels since the main audience for our 
predictions was ship captains, and many nautical charts use 

this as their reference point.  The tidal forecasts, water 
levels, and all meteorological data were downloaded from 
the TCOON database.  The tide forecasts were computed 
using a year’s worth of water level data and 26 harmonic 
constituents, using NOAA procedures [8].  The information 
from the different inputs was scaled to a [-1.1, 1.1] range 
and inserted into the first or hidden layer of an ANN (See 
Fig. 6).  A set of random numbers was picked to start the 
training process, then weights and biases were 
progressively optimized to adjust to the desired output or 
target.  The number of layers could be varied with each 
case, but previous studies [1,9] in Galveston Bay and 
Corpus Christi Bay showed that simple ANNs using only 
one hidden and one output layer to be the most effective.  

All ANN models had been developed, trained, tested, 
and assessed in a MatLab R13 environment and using the 
Neural Network Toolbox [10].  The Levenberg-Marquardt 
algorithm was used to train the model.  The model was 
trained over one year of data, then applied to the other four 
years to create five training sets and twenty testing sets.  
The average performances were computed over the testing 

 

    

 
Fig. 6.  An example of a typical Artificial Neural Network with an input 
deck of five components, two hidden layers and one output layer.   
 
 
 
 
 
 
 
 
 
 
 
 

  



3 Optimization and Application  

 

Data Set 
Year 

Data Set 
Span 

Data 
Available 

% pwl 
Missing 

Max Dur 
Miss Data 

(pwl)  

Rockport 

*Data is hourly* 

1996 
1/1/96 - 
12/31/96 

pwl, wtp, 
harmwl, sig 1.40% 112 pts.  

1997 
1/1/97 – 
12/31/97 

pwl, wtp, 
harmwl, sig 0.53% 22 pts.  

1998 
1/1/98 – 
12/31/98 

pwl, wtp, 
harmwl, sig 0.43% 23 pts.  

1999 
1/1/99 – 
12/31/99 

pwl, wtp, 
harmwl, sig 0.13% 4 pts.  

2000 
1/1/00 – 
12/31/00 

pwl, wtp, 
harmwl, sig 0.14% 7 pts.  

2001 
1/1/01 – 
12/31/01 

pwl, wtp, 
harmwl, sig 0.05% 1 pt.  

The first step in the optimization of the Artificial Neural 
Network was to find the number of previous water levels 
optimizing the accuracy of the water level forecasts.  The 
average Central Frequency (CF) was used to evaluate the 
accuracy of the forecast.  Previous water levels were added 
to the model in increments of three previous hours until the 
optimum CF was reached for that forecast, then the same 
process was repeated for increased forecasting times.  Once 
the optimum number of previous water levels was found, 
the typical methodology would have been to include 
previous winds.  However, since the database for the 
Rockport station did not have wind data for the period of 
this study this step was eliminated.  The next step in the 
optimization was to find the best number of previous water 
levels for another nearby station.  We decided to use the 
Bob Hall Pier, an open coast station.  The same process 
was used for these previous water levels until the best 
combination of water levels from Bob Hall Pier and 
Rockport was found.  Then, using the optimal water levels 
from Rockport, the third station, Port Aransas, was also 
evaluated.  Once again, previous water levels were 
increased until the optimum number was found.  Bob Hall 
Pier and Port Aransas have complete wind data, so once the 
optimal water levels were established, the winds for these 
stations could be incorporated into the model.  Previous 
winds were added in the same fashion as water levels: 
increasing the number of previous winds by three hours at a 
time until the optimum or 48 previous hours is reached.  
The final step in the optimization was incorporating the 
wind forecasts.  In the operational models the wind 
forecasts will be provided by the National Center for 
Environmental Predictions (NCEP) Eta-12 model.  
However, a historical database of past forecasts did not 
exist.  For the purpose of this study, wind forecasts were 
created using the actual wind measurements.  The 
performance of the ANN for the Rockport station was 
significantly improved when the wind forecasts from Bob 
Hall Pier were included, but not when including wind 
forecasts from the Port Aransas station.  Changing the 
number of neurons was also a possibility in finding the 
optimized model, but previous studies [11] showed no 
significant improvement in the results.  In general more 
accurate forecasts were observed when larger numbers of 
previous water levels were used.  The optimal ANN model 
changes slightly for different forecast times, but in general, 
using 24 hours of previous water levels at Rockport, 24 
hours of previous water levels at Bob Hall Pier, and 12 
hours of previous wind speeds and wind directions at Bob 
Hall Pier lead to the most accurate water level forecasts 
without using wind forecasts.  This model resulted in a 
CF(15 cm) of 99.59% for a 3-hour forecast, 99.20% for a 
12-hour forecast, 97.85% for a 24-hour forecast, and 

 
Table 1.  Availability of data for the Rockport station from 1996-2001, 
and a summary of the missing data. 

 
All ANN models had been developed, trained, tested, 

and assessed in a MatLab R13 environment and using the 
Neural Network Toolbox [10].  The Levenberg-Marquardt 
algorithm was used to train the model.  The model was 
trained over one year of data, then applied to the other four 
years to create five training sets and twenty testing sets.  
The average performances were computed over the testing 
 

 
 

Error  
The predicted value p minus  the 
observed value r  

SM   
Series Mean; the mean value of a time 
series y 

RMSE  Root Mean Square Error 
SD   Standard Deviation 

CF(X)   
Central Frequency; % of errors 
within the limits of -X and X 

POF(2X)   
Positive Outlier Frequency; % of 
errors greater than X 

NOF(2X)   
Negative Outlier Frequency; % of 
errors less than –X 

MDPO(2X) 
Maximum Duration of Positive 
Outliers 

MDNO(2X)  
Maximum Duration of Negative 
Outliers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.  NOS Skill assessment statistics.  (The Central Frequency is the 
main performance assessment.) 

 
sets.  The effectiveness of the models were determined 
using the National Ocean Service skill assessment 
statistics(See Table 2).   
 

  



91.33% for a 48-hour forecast.  Even for a two-day water 
level forecast, the model stays about 1.3% above the NOS 
criteria for a successful model or 90%.  The tide charts, 
however had a CF(15 cm) of 85%, and the Persistence 
Model, 87.18% for 48-hour forecasts. Both of which were 
below the standard for a NOS acceptable model.  Adding 
the Bob Hall Pier wind forecasts to the model increased the 
CF by 3.6% (See Fig. 7) which emphasized the importance 
of having wind forecasts available for the operational 
model.   

Effects of Including Wind Forecasts
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Fig 7.  The effects of the inclusion of wind forecasts.  The top line is the 
ANN model using Rockport previous water levels, Bob Hall Pier 
previous water levels and wind measurements, and Bob Hall Pier wind 
forecasts, which led to an increase in CF(15cm) of 3.5%.  The second 
line is using information from Port Aransas, and the third line is using 
information from Rockport only.  The bottom line is the tide chart 
prediction. 
 
4 Discussion 
 
The performance of the ANN at the Rockport station 
showed significant improvement over all other discussed 
models.  The 91.33% CF for 48-hour forecasts is a 
significant improvement over the other models considered 
(85% for the tide charts and 87% for the Persistence 
model).  It was interesting to find that data from Bob Hall 
Pier was more helpful in improving forecasts than data at 
Port Aransas.  Since geographically, Port Aransas is closer 
to Rockport and Port Aransas, like Rockport, is shielded 
from the Gulf of Mexico by the barrier islands.  The 
importance of winds can be observed in the increase in 
accuracy when this information is added to the model.  A 
0.4% increase in CF was observed when wind data was 
incorporated, and although this seems like a small 
difference, practically this represents an additional day and 
a half for which the predictions will be within the ± 15cm 
range.  When wind forecasts were used there was a 3.6% 
increase in effectiveness, which corresponds to an 
additional 13 days of acceptable water level predictions.  
Archived wind forecasts were not available throughout this 
research, so the forecasts were obtained from actual 
measurements.  The real-time model will utilize the Eta-12 
wind forecast database, made available through a 

collaboration with the Corpus Christi Weather forecasting 
Office [12].  These forecasts have already been tested in a 
separate study of three local stations: Bob Hall Pier, Naval 
Air Station, and Port Aransas [13].  This study and a 
related study on Galveston Island [14] showed that the 
difference between wind forecasts and wind measurements 
was not significant for the model, and that the water level 
predictions were not significantly affected by the likely 
differences between forecasts and measurements.  
Incorporating accurate wind forecasts will be particularly 
important when predicting water levels during frontal 
passages.  The ANN has difficulty in catching very rapid 
changes in water levels without the association of wind 
forecasts during sudden changes in wind speeds and wind 
directions.  The application of the ANN to tropical storms 
and frontal passages was also found to be very effective for 
up to 24-hour forecasts for the case of Tropical Storm 
Frances (See Fig. 8).  Throughout this storm, the ANN 
stayed within 10 cm of the water level most of the time, 
and at its worst, was off by about 18 cm.  The application 
of the model to tropical storms is being studied, but caution 
will be exercised as each storm is unique. 
 

 

 

 

 

 
Fig. 8.  The performance of the ANN during Tropical Storm Frances.  
This model was trained on data from 1997, then applied to 1998.  Black 
is the ANN performance, underlying gray is actual water levels, and the 
harmonic pattern on the bottom is the tide chart prediction. 
   
5 Conclusions 
 
The Rockport station was the first of the TCOON shallow 
water stations upon which ANN models were tested. The 
results showed that the ANN outperforms all present 
models for the Rockport station (See Table 3).  The tide 
charts and the Persistence models do not meet the NOS 
criteria, while the Linear Regression model and the Neural 
Network Models (one with wind forecasts and one without) 
showed accuracy above the 90% CF criteria with the ANN 
model including wind forecasts having the best 
performance at 94.5%.  The effectiveness of the model 
shows that a strong correlation can be established between 
water level forecasts and meteorological factors.  The 
optimal model is a combination of the previous water 
levels at both Rockport and Bob Hall Pier, and previous 
wind information from the same coastal station.  In this 
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