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Abstract: There is an abundancy of systems characterized by parabolic PDEs in science

and engineering, especially in chemistry and physics. These systems have a scalar variable,

we generally call time, defining the evolution of the system under consideration. The

governing equation(s) involves the unknown(s) and their first order partial derivative(s)

with respect to this variable. Time variant Schrödinger equations where the unknown is the

wavefunction which is responsible for the probability density for the system and Liouville

equations for the statistical mechanics where the unknown is somehow responsible for

a density in the systems’ phase space (here we use the plurality since both case may

differ from Hamiltonian to Hamiltonian). Certain PDE(s), depending on so-called spatial

coordinates, govern the behavior of the system in these and similar cases even though the

partial differential equation nature is not necessarily needed. Hence we give the following

equation for more abstractioning

i
∂ψ(t)

∂t
= L̂ψ(t) (1)

where we call the unknown entity ψ(t) “wavefunction” by following the quantum mechan-

ical tradition despite ψ(t) need not be a true function. It may be anything like vector,

matrix, function, or, operator as long as it lies in an appropriately defined Hilbert space.

In this sense it has the abstract meaning “vector” (but not necessarily a Cartesian vec-

tor). L̂ stands for a linear operator (which is not necessarily a partial differential operator)

mapping from the Hilbert space, where ψ(t) lies, to the same space. Even though it is

not explicitly shown here the system is characterized by certain operators we call “System
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Operators” like the positions and momenta in the case of quantum mechanics. We denote

these operators by ŝ1,...,ŝn or in a shorthand notation ŝ.

One way to solve the equation in (1) is to find the vector ψ(t) which may be not

so technically easy as its first glance appearence implies even when L̂ does not explictly

depend on t. This autonomy is not so much greater limitation since it can be provided for

us even (1) is nonautonomous at the expense of extending the space spanned by ψ(t) to

a higher dimension. The second possibility is the utilization of the expectation values of

the system operator ŝ and its outer powers. This excludes the determination of ψ(t) but

necessitates the evaluation of the expectation values for all nonnegative outer powers of the

state operator. A vector ODE is constructed for each outer power of the state vector by

using (1). However, the action of the commutator with L̂ on each outer power is required.

By following the general property encountered in the traditional cases we represent these

actions in terms of certain Taylor expansion in outer powers of the state operator. Thus

we arrive at an infinite set of ODEs with an infinite constant coefficient matrix we call

“Evolution Matrix”. The formal solution of this set of ODEs can be obtained in terms of

a time variant exponential matrix over the Evolution Matrix and the initial value vector.

Talk focuses on certain details of these and some related issues.
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